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Abstract. Vibration analysis of a non-linear parametrically and self-excited system of two degrees of freedom
was carried out. The model contains two van der Pol oscillators coupled by a linear spring with a a periodically
changing stiffness of the Mathieu type. By means of a multiple-scales method, the existence and stability of
periodic solutions close to the main parametric resonances have been investigated. Bifurcations of the system
and regions of chaotic solutions have been found. The possibility of the appearance of hyperchaos has also been
discussed and an example of such solution has been shown.
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1. Introduction

Vibrations described by differential equations with self-excited as well as with parametric
excitation terms occur in some dynamic systems [1–5]. Systems with one degree of freedom
have been studied by Tondl [1], Yano [2] and Szabelski and Warmiński [6, 7]. Such systems
are interesting because they possess two different sources of vibration excitations. Thus, their
characteristic features are a non-linear interaction between parametric and self-excitations and
a synchronisation phenomenon. An entrainment of vibration takes place near the parametric
resonances. In that region, systems vibrate periodically with only a single frequency. Outside
the synchronisation area, almost-periodical vibrations appear, represented by almost periodic
limit cycles on the Poincaré map or Hayashi plane [8]. One-degree-of-freedom systems of
that broad class were found to vibrate chaotically for a wide range of system parameters [4, 5,
9]. Recently, systems with many degrees of freedom have attracted interest within the context
of synchronisation phenomena [3] and chaotic vibrations [10, 13]. Many-degrees-of-freedom
models can describe mechanical and electrical systems [1, 10–14]. One can also find them
describing some mechanisms of vibrations generation in the case of manufacturing processes
[15]. Among other aims, the study of hyperchaotic transitions has also been of interest [12,
13]. Unfortunately, papers [10–13] are only concerned with externally forced systems, so the
results cannot be strictly generalised for parametric ones. In this paper, we examine vibra-
tions of a two-degrees-of-freedom system with parametric and self-excitations. The paper is
organised as follows: after a short introduction (Section 1) we present the physical model
(Section 2). In Section 3 we provide analytic consideration by means of a multiple-scale-
of-time method. Section 4 is devoted to synchronised vibrations near the main parametric
resonances. In Section 5 bifurcations and chaotic vibrations are analysed while in Section 6
the possibility of the appearance of hyperchaos is briefly discussed. We end up with a summary
and conclusions in Section 7.
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Figure 1. Physical model of the parametric self-excited system.

2. Vibrating System Model

Let us consider a parametric self-excited system with two degrees of freedom and non-linear
symmetric characteristics of elasticity. The mathematical model consists of two van der Pol os-
cillators with Duffing terms. They are coupled by a linear spring with a periodically changing
elasticity. Such a type of coupling occurs in descriptions of gear systems dynamics. In the first
approximation, harmonic functions can be used to describe varying-in-time elasticity [16].
Schmidt [17] analysed a self-excitation of gears caused by breaking off the oil film between
the meshing teeth. In our case, van der Pol terms are sources of self-excitation. The physical
model of coupled oscillators is presented in Figure 1. Inserts (a) and (b) show different phases
of gears, which correspond to varying elasticity.

Differential equations of motion in generalised co-ordinates have the following form:
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dimensionless equations of motion can be written as
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Ẍ1+ (−α1+ β1X
2
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Free vibration frequencies of the linear system are represented by the formula:

p2
1,2 =

1

2

[
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√
[(δ1+ δ2)(1+M)]2− 4Mδ1(δ1+ 2δ2)

]
. (3)

Includingα1 = µα̃1; β1 = µβ̃1; γ1 = µγ̃1 and introducing

Y1 = X1+ λ1X2, Y2 = X1+ λ2X2, (4)

we obtain differential equations in quasi-normal coordinatesY1 andY2:
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In the transformation of coordinates, the following notation is introduced:

λ1 = δ1+ δ2− p2
1

δ2M
; λ2 = δ1+ δ2− p2

2

δ2M
; ϕ = 1

λ1− λ2
;

ψ1 = λ1

λ1− λ2
; 92 = λ2

λ1− λ2
; ε1 = 91+ ϕ; ε2 = 92+ ϕ.

Forµ = 0, the system of equations is decoupled into two independent differential equations.
Generally, different types of resonance can appear in a system with many degrees of freedom
[18] and harmonic resonances, as well as internal and combination ones, can be taken into
account. For the internal resonance, the free frequencies must satisfy the condition

s∑
i=1

ni pi = 0; i = 1,2, . . . , s; s ≤ N,

whereni is the integer number,N the number of degrees of freedom,s a natural number, and
pi the free frequency of the system. In the case of two degrees of freedom, the above condition
reads:

n1p1+ n2p2 = 0.

If a parametric excitation frequencyϑ is close to one of free frequencies, a solution needs
both quasi-normal coordinates to be considered simultaneously.
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On the other hand, the condition for a combination resonance existence can be written as
nϑ =∑s

i=1 nipi , wheren denotes a natural number. In the case of a two-degrees-of-freedom
system, a combination resonance can often be met in a region between two natural frequencies.

3. Analytical Examinations

The examinations of parametric and self-excited systems were carried out by applying various
approximate analytical methods [1, 3]. We anticipate a periodic solution of Equation (5) using
the multiple-scale-of-time method [14]. For analytical calculations,µ is used as a small para-
meter. In a real mechanical system, the modulation of stiffnessµ is rather small in comparison
with its average valueδ2. We define different time scalesTn = µnτ , n = 0,1,2, . . . . In the
case of the main parametric resonance close to the first frequency of the free vibrations, we
can write

ϑ2 = p2
1 + µσ1. (6)

Solutions of the system in Equations (5) are anticipated in form

Y1(τ ;µ) = Y10(T0, T1)+ µY11(T0, T1)+ · · · ,
Y2(τ ;µ) = µY21(T0, T1)+ · · · . (7)

Time derivatives are expressed by the formulae:
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whereDm

n = ∂m/∂T mn . Applying expressions (7) and (6) to Equation (5), we obtain
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The solution of Equation (8) may be presented in the form
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Putting (10) into (9), we get
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The condition for the elimination of secular terms leads to the relation:
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The functionA is expressed by the formula

A = 1

2
a(τ)exp[i8(τ)]. (13)

After substituting (13) into (12) and separating the real and imaginary parts, we find
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A solution in a first-order approximation has the form:

Y1(t) = a cos(ϑt +8)+ · · · . (15)

For the stationary statėa = 0; 8̇ = 0, we obtain the following system of algebraic non-linear
equations:
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Using (6) and (16), we obtain an equation for determining the amplitude of a periodic solution:
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Equation (17) can have trivial (a = 0) and non-trivial (a 6= 0) solutions. By puttinga = 0
into (17) we obtain:
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and bifurcation points

ϑ∗1,2 = (18)√√√√√√1
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Parametersϑ∗1,2 define the points of curvea(ϑ) which lie onϑ axis (a(ϑ) = 0). These points
can appear when the following condition is satisfied:

|α̃1|〈∼
∣∣∣∣ ε2(1−Mλ1)

2p1(Mλ1ϕ − 92)

∣∣∣∣ . (19)

In the case of resonance with respect to the second frequency of free vibrations, we can write

ϑ2 = p2
2 + µσ2 (20)

and we anticipate the solution of Equations (5) in the following form:

Y1(τ ;µ) = µY11(T0, T1)+ · · · ,
Y2(τ ;µ) = Y20(T0, T1)+ µY21(T0, T1)+ · · · . (21)

Applying a similar procedure, as in the previous case (6–14), we obtain two differential
equations of the first order:
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A solution in a first-order approximation has the form:

Y2(t) = a cos(ϑt +8)+ · · · . (23)

The stationary state is described by the dependence:
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Bifurcation points of trivial and non-trivial solutions can be obtained from the formula:

ϑ∗1,2 = (25)√√√√√√1

2

∣∣∣∣∣∣∣−α2
1

[
(Mλ2ϕ −91)2− 4p2

2

µ2

]
∓
√√√√
α4

1

[
(Mλ12ϕ −91)2 − 4p2

2

µ2

]2

+µ2ε2
1(1−Mλ2)2− 4p4

2

∣∣∣∣∣∣∣



Synchronisation and Chaos in a Parametrically and Self-Excited System141

and then:

|α̃|〈∼
∣∣∣∣ ε1(1−Mλ2)

2p2(Mλ2ϕ − 91)

∣∣∣∣ . (26)

The stability of periodic solutions will be carried out using approximate differential equations
of the first order (14) and (22) in a shortened form:

ȧ = f1(a,8); 8̇ = f2(a,8). (27)

For such equations, the characteristic determinant of the variational system has the following
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Index ‘0’ denotes partial derivatives in the equilibrium point. The stability of the approximate
solution depends on the roots of the characteristic equation (28), which are determined by
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where, for the main parametric resonance with respect to the frequencyp1,
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and for the main parametric resonance with respect to the frequencyp2,
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The stability condition will be satisfied when all characteristic equation roots of the first-order
approximation system have negative real terms.

4. Regular Vibrations

The example calculations were carried out by using derived analytical dependencies and
numerical simulations. For numerical examinations, we have used the ‘Dynamics’ package
[19] as well as our Fortran procedures. Calculations were done for different sets of system
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Figure 2. Main parametric resonance around the first (a) and second (b) frequencies of the system-free vibrations;
–◦–◦– stable focus; –4–4– unstable saddle.

parameters taken from the most interesting intervals of physical systems [1, 2]. Sample results
of calculations were obtained for the following parameters:

α1 = 0.01, β1 = 0.05, γ1 = 0.1, µ = 0.2, M = 0.5, δ1 = 1.0, δ2 = 0.3. (32)

Transformation from the generalised (Equations (2)) to quasi-normal coordinates (Equa-
tions (5)) demands, bearing in mind the relationships given in Section 2, determining the
free vibrations frequenciesp1, p2 of a linear system and values of the coefficientsλ1, λ2, ϕ,
91,92, ε1, ε2. These values are

p1 = 0.766, p2 = 1.168, λ1 = 4.754, λ2 = −0.421,

ϕ = 0.193, 91 = 0.919, 92 = −0.0813, ε1 = 1.112, ε2 = 0.112.

For the accepted values of the set of system parameters, the resonance curve around the first
(p1) and the second (p2) of free vibration frequencies were plotted in Figures 2a and 2b,
respectively. The figures present amplitudes of vibrations in quasi-normal coordinates. The
solid line means the stable periodic solution and the dashed one means the unstable solution.
The stability type was checked according to the characteristic equation roots (29). We obtained
two types of stability: stable focus marked by a circle (complex roots with a negative real
part) and unstable saddle point marked by a triangle (two real roots, one negative and one
positive). We also calculated the bifurcation points of both trivial and non-trivial solutions.
For p1 we obtainedϑ∗1 = 0.756 andϑ∗2 = 0.776 from (18), satisfying the condition (19)
α̃1 = 0.05< 0.186, and forp2 from (25)ϑ∗1 = 1.109 andϑ∗2 = 1.224 with the condition (26)
α̃1 = 0.05< 179.875, respectively.

In Figure 3, we present the numerical results as a bifurcation diagram for the analysed sys-
tem parameters (32).X1 was plotted in a stroboscopic way with an excitation frequency. Here
one can see two regions of the discussed main parametric resonances forϑ ∈ [0.78;0.85]
andϑ ∈ [1.15;1.40], respectively. It is also possible to observe a combination resonance in
the middle of these two regions. There is also an additional resonance for very low frequency
ϑ ≈ 0.6, which, however, was not analysed analytically in this paper. On the other hand,
for a symmetric system (parameters are chosen as in (32) butM = 1.0 andδ2 = 1.0) we
found that condition (18) for the first frequency of free vibrationp1 = 1.0, is not fulfilled.
Thus, instead of two regions of main resonance, only one region aroundp2 = 1.73 is present.
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Figure 3. Bifurcation diagramversusϑ for the system parameters (32).

Figure 4. Bifurcation diagramversusϑ parameter for a symmetric system (M = 1.0, δ2 = 1.0).

Figure 4 shows a bifurcation diagram for these parameters. In the figure, only one region for
ϑ ∈ [1.7,1.9] with synchronised vibration is visible. Note that in the generalised coordinates,
the synchronisation is not clearly manifested (Figure 3) as it usually is observed in one-degree-
of-freedom systems [4, 6–9]. In Figures 5a–5d, we present time histories for the system
parameters (32) andϑ = 0.80 both for quasi-normal (Figures 5a, 5b) and for generalised
(Figures 5c, 5d) coordinates.

The solution expressed in quasi-normal coordinates allows us to analyse the complex
system as two independent systems with one degree of freedom. It is a general feature of
a multi-degrees-of-freedom system with small non-linearities. In the case of a two-degrees-
of-freedom system, the vibrations are often characterised by two frequencies and they are
decoupled in quasi-normal coordinates, assuming a smallµ parameter. The small modulations
of a vibration amplitude visible in Figures 5a and 5b are due to the non-linearities of the con-
sidered system. In the case of a symmetric system (Figure 4), there is only one characteristic
frequency,p2 = 1.73, and the vibrations are of single frequency for both quasi-normal and
generalised coordinates.
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Figure 5. Vibration time histories in quasi-normal (a, b) and generalised (c, d) coordinates aroundp1 frequency
for ϑ = 0.80.

5. Bifurcations and Chaotic Vibrations

We have transformed two second-order differential equations (Equation (2)) into a system of
four first-order differential equations and have simulated them numerically. Using the same
system parameters as (32), but with larger excitation amplitudeµ:

α1 = 0.01, β1 = 0.05, γ1 = 0.1, δ1 = 1.0, δ2 = 0.3, µ = 0.8, M = 0.5, (33)

we have calculated the maximal Lyapunov exponentλ (we do not consider the additional
nodal exponent which always appears in a non-autonomic system) in the region of excitation
frequencyϑ ∈ [0.5,2.5]. The exponent has been calculated six times for different initial
conditions and plottedversusϑ in Figure 6. The picture shows that three regions of positive
values of the Lyapunov exponent are present aroundϑ ∼= 0.56,0.95 and in an intervalϑ ∈
[1.38,1.51]. These regions correspond to the chaotic behaviour of the system. Apart from
that, the majority of solutions are associated withλ ≈ 0.00 (Figure 6).

Such a value of the Lyapunov exponent is usually connected with a quasi-periodic solution
or a bifurcation point. For relatively small values of excitation frequencyϑ ∈ [0.5,0.6] and
ϑ ∈ [0.8,1.0] (and some singular points aroundϑ ∼= 1.5), we see a definite negative value of
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Figure 6. Lyapunov exponentversusϑ parameter.

λ. This corresponds to the regular solution synchronised with parametric excitation. In many
regions, we found a number of possible values ofλ, where for the same system parameters
but different initial conditions, solutions of such different types as periodic, quasi-periodic
and chaotic, can coexist. For clarity, we have analysed the evolution of attractors by means
of a Poincaré map. Figure 7 presents the Poincaré maps for the same set of parameters as in
Figure 6 (33) and some chosen values ofϑ . In Figure 7a (ϑ = 0.56), we show one strange
chaotic attractor (denoted by 3) and two other regular solutions synchronised with excitation
(denoted by 2 and 3), each represented by three singular points. For the larger value ofϑ = 0.7
(Figure 7b), we observe one quasi-periodic attractor (denoted by 1) and two regular periodic
attractors (denoted by 2, 3). Figure 7c (ϑ = 98) shows again one chaotic (denoted by 1) and
two regular periodic attractors (denoted by 2, 3). Forϑ = 1.1 (Figure 7d), we have found only
one quasi-periodic attractor with a close curve on the Poincaré map. Forϑ = 1.4 (Figure 7e),
a quasi-periodic motion transits to a chaotic one which is represented by a strange attractor
and, later, this large strange attractor splits into two chaotic motions (denoted by 2 and 3 in
Figure 7f) with an additional quasi-periodic attractor in the middle of Figure 7f (denoted by
1). In Figure 7g (ϑ = 1.7), one can see that a quasi-periodic solution is still present in the
middle of the picture (denoted by 1) but two others have changed into other quasi-periodic
solutions (denoted by 2 and 3).

Using this analysis for larger value ofϑ , we obtained one quasi-periodic attractor of a
different topology represented by a singular closed curve (Figure 7h). However, for larger
excitation frequenciesϑ = 1.9 andϑ = 2.5, we note that the quasi-periodic attractors
(Figures 7i and 7j) resemble a structure similar to the quasi-periodic one (denoted by 1)
in Figure 7g. For each of the cases examined, we have calculated all non-trivial Lyapunov
exponents and expressed them in Table 1. Analysing the table, one can see that some of the
quasi-periodic solutions have only one nodal Lyapunov, exponent while the others have even
two nodal values. Attractors with a closed curve on Poincaré maps (Figures 7d, 7g (2, 3),
7h) have only one nodal Lyapunov exponent but attractors represented by torus structures
on Poincaré maps (Figures 7b (1), 7f(1), g(1), i, j) are characterised by two nodal Lyapunov
exponents (Table 1). The change of attractor topology with changingϑ can be interpreted as
Hopf bifurcation [20].

Figure 8 presents a bifurcation diagram ofX1 againstϑ for the examined system. For each
value ofϑ , the calculations were repeated six times for different sets of initial conditions. One
can easily recognise the synchronised periodic motions of the system represented by singular
lines in the diagram. However, it is rather difficult to distinguish quasi-periodic solutions from
chaotic ones. This is because they are similarly represented in the figure by black regions. This
bifurcation diagram is much richer that the former for smaller value of the excitation amplitude
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Figure 7. Poincaŕe maps for various values ofϑ . (a) ϑ = 0.56; (b) ϑ = 0.70; (c) ϑ = 0.98; (d) ϑ = 1.10;
(e)ϑ = 1.40; (f) ϑ = 1.50.

µ = 0.2 (Figure 3). For comparison, we have done the numerical calculations for a much
larger excitation amplitudeµ. In Figure 9, the maximal Lyapunov exponent was plottedversus
ϑ for the system parameters assumed to be like (33) but forµ = 10.0. For most of the frequen-
ciesϑ , the Lyapunov exponent is negative. Nevertheless, we have observed three clear regions
of negative values ofλ aroundϑ = 0.58 andϑ = 0.92 and the intervalϑ ∈ [1.39,1.55].
Interestingly, they closely correspond to three similar regions of chaotic solutions obtained
for a smaller value of excitation amplitude,µ = 0.8 (Figure 6). For 1.8 < ϑ < 2.5, the
Lyapunov exponent is negative and smaller than−1.0 (beyond the range of the diagram in
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Figure 7. Continued. (g)ϑ = 1.70; (h)ϑ = 1.80; (i) ϑ = 1.90; (j) ϑ = 2.50.

Figure 8. Bifurcation diagramversusϑ . System parameters as in Figure 6.

Figure 9). Note the scale in Figure 9 is different from that in Figure 6. The main difference
between these two diagrams is that the positive value of the Lyapunov exponent is much larger
(three times larger) forµ = 10.0 than forµ = 0.8 (Figure 6 and Table 1). The large range
of Lyapunov exponent fluctuations visible in Figure 9 is obviously connected with the large
value of the parametric excitation amplitudeµ. Figure 10 shows examples of Poincaré maps
for a number of excitation frequencies. Starting fromϑ = 0.98, we find two periodic atractors



148 J. Warmínski et al.

Figure 9. Maximal Lyapunov exponentversusϑ . System parameters as in Figure 6 butµ = 10.

Table 1. Lyapunov exponents for variousϑ parameters.

ϑ Attractor type λ1 λ2 λ3 λ4

(see in Figures 7a–7j)

0.56 Chaotic – No. 1 0.037 –0.004 –0.019 –0.094

0.56 Periodic – No. 2, 3 –0.044 –0.045 –0.073 –0.073

0.70 Quasi-periodic – No. 1 0.000 0.000 –0.003 –0.009

0.70 Periodic – No. 2, 3 –0.005 –0.005 –0.124 –0.124

0.98 Chaotic – No. 1 0.012 –0.001 –0.066 –0.124

0.98 Periodic – No. 2, 3 –0.050 –0.051 –0.057 –0.059

1.10 Quasi-periodic 0.000 –0.075 –0.075 –0.170

1.40 Chaotic 0.049 0.000 –0.138 –0.260

1.50 Quasi-periodic – No. 1 0.000 0.000 –0.002 –0.007

1.50 Chaotic – No. 2, 3 0.013 0.001 –0.120 –0.322

1.70 Quasi-periodic – No. 1 0.000 0.000 –0.002 –0.007

1.70 Quasi-periodic – No. 2, 3 0.000 –0.018 –0.266 –0.266

1.80 Quasi-periodic 0.000 –0.002 –0.003 –0.003

1.90 Quasi-periodic 0.000 0.000 –0.002 –0.007

2.50 Quasi-periodic 0.000 0.000 –0.003 –0.007

with a single frequency (denoted by 1 and 2 in Figure 10a). Forϑ = 1.4 andϑ = 1.5, we
have found chaotic motions of the system, represented by strange attractors in Figures 10b
and 10c. It is interesting to note that the strange attractor visible in Figure 10b is split into
two separate strange attractors (denoted 1 and 2 and obtained for different initial conditions).
Figure 10d presents again two periodic solutions with a single frequency. All four non-trivial
Lyapunov exponents calculated for the considered cases (ϑ = 0.98,1.40,1.50,1.70) are
given in Table 2. Figure 11 shows a bifurcation diagram plotted against excitation frequency
for µ = 10. We can easily recognise the regions of periodic and chaotic motions, which
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Figure 10. Poincaŕe maps for various values ofϑ . (a)ϑ = 0.98; (b)ϑ = 0.1.40; (c)ϑ = 1.50; (d)ϑ = 1.70.

Table 2. Lyapunov exponents for variousϑ parameters.

ϑ Attractor type λ1 λ2 λ3 λ4

(see Figures 10a–d)

0.98 Periodic – No. 1, 2 –0.603 –0.883 –1.143 –1.596

1.40 Chaotic 0.179 –0.422 –0.617 –1.746

1.50 Chaotic 0.141 –0.509 –0.623 –1.524

1.70 Periodic –0.991 –0.912 –0.913 –2.444

coincide with the regions of positive Lyapunov exponents (Figure 9). This also confirms the
results obtained by means of a Poincaré map (Figure 10).

6. Transition to Hyperchaos

It is well known that chaotic vibration of coupled oscillators can be realised in differ-
ent ways depending on the analysed system parameters [10–13]. A hyperchaotic solution,
defined as one which posseses more that one positive Lyapunov exponent, can appear [12,
13] particularly for multi-degrees-of-freedom systems. In this section we present possibility
of hyperchaos in our model with two coupled van der Pol oscillators and with parametric
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Figure 11. Bifurcation diagramversusϑ parameter.

Figure 12. Poincaŕe maps forϑ = 2.6 and variousµ (a)µ = 6.2; (b)µ = 7.0; (c)µ = 10.0; (d)µ = 14.0.

excitation. Poincaré maps for chosen system parameters:α1 = 0.1, β1 = 0.05, γ1 = 3.0,
δ1 = −0.5, δ2 = −0.3, M = 0.5, ϑ = 2.6 and various values of the excitation amplitude
µ = 6.2, 7.0, 10.0, 14.0 are presented in Figures 12a, 12b, 12c and 12d, respectively.

Figure 12a presents the periodic solution with three characteristic points on a Poincaré
map. They correspond to a solution with a triple period of oscillation. We checked that,
for larger values ofµ, the solution evaluates through Hopf bifurcation to a chaotic solution



Synchronisation and Chaos in a Parametrically and Self-Excited System151

Table 3. Lyapunov exponents for variusµ parameters.

µ Attractor type λ1 λ2 λ3 λ4

(see in Figures 12a–12d)

6.2 Periodic –0.022 –0.022 –0.031 –0.031

7.0 Hyperchaotic 0.432 0.120 –0.183 –0.494

10.0 Hyperchaotic 0.536 0.181 –0.261 –0.633

14.0 Periodic –0.106 –0.108 –0.130 –0.131

(Figures 12b and 12c). For a large enough value ofµ, the system solution transits back to a
periodic vibration with a single frequency represented by one point on the Poincaré map.

After consideration of the chaotic solution nature (Figures 12b and 12c) it appeared that
two of the Lyaponov exponents were positive (Table 3). In such cases, the system manifests
hyperchaotic vibration. Examples of the time histories for different types of vibrations are
presented in Figures 13a–13d. Figure 13a shows the results for a chaotic solution (the system
parameters as in Figure 7e).

In Figures 13b and 13c, the time histories of quasi-periodic solutions are shown with para-
meters corresponding to Figures 7h and 7j, respectively. Figure 13d presents the time history
of hyperchaotic motion with two positive Lyapunov exponents (see Table 2). The parameters
are chosen as in Figure 10c.

The difference between chaotic (Figure 13a) and quasi-periodic solutions (Figures 13b
and 13c) is significant. Moreover, one can also notice the different characters of chaotic
(Figure 13a) and hyperchaotic (Figure 13d) vibrations. In the case of hyperchaotic vibrations,
the system seems to move differently in the sequences of time intervals. The time histories
for two different quasi-periodic solutions with one (Figure 13b) or two (Figure 13c) nodal
Lyapunov exponents are very similar to each other.

7. Summary and Conclusions

In this paper we have investigated the complex system of coupled non-linear oscillators ex-
cited parametrically. As usual, the interaction between self-excited and parametric excitation
leads to a number of interesting results like entrainment of frequency and synchronisation
phenomena. We have demonstrated that in our system for some sets of parameters, one of the
main parametric resonances close to the free vibration frequency can be forbidden. Analyt-
ical methods enabled us to examine the system for small values of theµ parameter. Other
interesting phenomena, like transition to chaos and hyperchaos, were detected numerically
for larger values of this parameter where analytical methods are not applicable. We have
examined bifurcations by means of Poincaré maps and Lyapunov exponents and found that
Hopf bifurcations play a major role in this system. Different types of motion were obtained:
periodic, quasi-periodic first type (closed curve on the Poincaré map), quasi-periodic second
type (torus on the Poincaré map), chaotic and hyperchaotic. Transition from chaotic to hy-
perchaotic motion is possible in the system for larger values of the parametric excitation
amplitude which, however, do not correspond to any real mechanical system. The transition
from a regular to hyperchaotic solution for generalised van der Pol equations was earlier ex-
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Figure 13. Vibration time histories in generalised coordinates for: (a) chaoticϑ = 1.40; (b) quasi-periodic
ϑ = 1.80; (c) quasi-periodicϑ = 2.50; (d) hyperchaoticϑ = 2.60.

amined by Kapitaniak and Steeb [13]. In their treatment, the model was different. It possessed
no linear spring term and was subjected to an external excitation instead of a parametric one. In
spite of this, the results concerning hyperchaotic vibrations we obtained are similar to theirs.
The mechanism of the transition to hyperchaos in our case is still under consideration and the
results will be published separately. This paper is a continuation of papers [4, 5], where the
authors carried out a detailed analysis of a parametrically excited van der Pol oscillator with
one degree of freedom for both regular and chaotic solutions.
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6. Szabelski, K. and Warmiński, J., ‘The parametric self excited non-linear system vibrations analysis with the

inertial excitation’,International Journal of Non-Linear Mechanics30, 1995, 179–189.
7. Szabelski, K. and Warmiński, J., ‘The self excited system vibrations with the parametric and external

excitations’,Journal of Sound and Vibration908, 1995, 595–607.
8. Hayashi, Ch.,Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, 1964.
9. Litak G., Spuz-Szpos, G., Szabelski, K., and Warmiński, J., ‘Vibration of externally forced Froude
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