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The control of the chaotic dynamics in a nonlinear mass-spring model with non-smooth stiffness
is analyzed here. This is carried out by applying the phase control technique, which uses a
periodic perturbation of a suitable phase ϕ. For this purpose, we take as prototype model a
system consiting in a double-well potential with an additional spring component, which acts
into the system only for large enough displacements. The crucial role of the phase is evidenced
by using numerical simulations and also by using analytical methods, such as the Melnikov
analysis. We expect that our results might be fruitful and with implications in some mechanical
problems such as suspension of vehicles, among others, where similar models are extensively
used.
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1. Introduction

There is a rich literature on chaotic systems either modeled by a set of nonlinear ordinary differential equa-
tions or with smooth functions of the displacement or the velocity [Sprott, 2003]. Non-smooth systems are
very common in Engineering [Radons & Neugebauer, 2004; Litak et al., 2007; Pavlovskaia & Wiercigroch,
2007] in which they have relevant implications. In the present paper we implement a control scheme to
control the dynamics of the two stage mass-spring oscillator as shown in Fig. 1.

In this system the two considered springs are connected in a parallel way. One of them has nonlinear
characteristics producing the double-well potential while the other one is acting according to the Hooke’s
law, F = −kx, as shown in Fig. 1. Such connections of springs are often considered in practical situations as
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in the suspension of vehicles [Verros et al., 2000; Von Wagner, 2004], among others. The effect of the linear
spring on the two exterior nonlinear springs has been thoroughly analyzed by Litak et al. in Ref. [Litak et
al., 2012]. In this paper we focus our research in a suitable control implementation technique in order to
obtain a desirable dynamical behavior.

Since the pioneering work on controlling chaos due to Ott, Grebogi and Yorke, [Ott et al., 1990],
different control schemes have been proposed that allow to obtain a desired response for a dynamical
system by applying some small but accurately chosen perturbations. In this context, some techniques that
allow avoiding escapes in open dynamical systems presenting transient chaos have been proposed, with
applications to many different situations in physics and engineering (see Ref. [Aguirre et al., 2004] and
references therein). However, most of these methods are feedback methods, i.e., they require the application
of a fast and adequate state-dependent perturbation to the system, so that in some experimental situations
they might become unpractical.

In those situations it has been shown that sometimes applying a small and state-independent harmonic
perturbation can lead to analogous results [Lima & Pettini, 1985; Meucci et al., 1994]. The methods based
on this idea are traditionally known as nonfeedback methods [Qu et al., 1994]. Among them the phase
control scheme [Qu et al., 1994; Zambrano et al., 2006,b; Litak et al., 2007] has been found to be useful
to control different behaviors in periodically driven dynamical systems, including not only control of a
chaotic trajectory, but also other paradigmatic dynamical behaviors such as crisis-induced intermittency,
control of escapes in open dynamical systems [Seoane et al., 2008], control of dynamics in excitable systems
[Zambrano et al., 2008], to cite just a few. This method focus on the role of the phase difference of a periodic
perturbation with respect to the main forcing, which is adequately “tuned” in search of a desired response
from the system. Another control method [Kapitaniak & Brindley, 1988], though based in a feedback
procedure, was used to preserve transient chaos. In this last paper, the authors focused in the transient
chaos and its lifetime using Lyapunov exponents.

Our aim in this paper is to show that the phase control method can be applied to non-smooth systems,
which are used to model many systems in engineering.
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Fig. 1. Schematic plot of the two stage spring-mass model. The effective exterior springs in the figure are assumed to have
the nonlinear characteristics, while the interior which introduces the non-smoothness, has a linear characteristics. h denotes
the tip position of the spring free length with respect to the equilibrium point x = 0.

This paper is organized as follows. Section 2 presents a description of our model and the phase control
scheme implementation. In section 3 we solve the corresponding differential equations and discuss the
results explaining the role of the phase in the control of the dynamics. On the other hand, the numerical
estimation of the integral can be done numerically. This concept, used in previous works [Litak et al., 2008],
is used in Sec. 4. After presenting the numerical results, confirming the estimated critical parameters, the
paper ends with the conclusions and a discussion presented in Sec. 5.
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Fig. 2. (Color online) The solid curve represents the double-well symmetric potential V1(x) = −x2

2 + x4

4 and the potential

obtained when the additional spring V (x) = −x2

2 + x4

4 + k
(x−x0−h′)2Θ(x−x0−h′)

2 , for k = 1 is considered. The parameters
x0 + h′ = h, x0 = 1 is the position of the right hand side stable equilibrium point, while h′ ( h′ = 0 for (a); −0.1 for (b); and
−0.3 for (c)) denotes the tip position of the spring free length.

2. Model description

The model we take as prototype, according to Fig. 1, is given by the non-dimensional equation of motion
[Litak et al., 2012]:

ẍ + αẋ − x + x3 + k(x − h)Θ(x − h) = F sin(ωt), (1)

where α is the damping parameter and k is a constant associated to the linear spring of a certain length
and a non-symmetrical contact loss. Θ(x) is the Heaviside step function, F is the amplitude of a harmonic
excitation with frequency ω and h is the the constant corresponding to the position of the spring free length
tip with respect to the equilibrium point x = 0 (see Fig. 1). We can observe that if k = 0 we have the well
known Duffing oscillator [Duffing, 1918; Aguirre & Sanjuán, 2000; Baltanás et al., 2001].

The restoring force F (x) is defined by the potential V (x) (Fig. 2) as follows

F (x) = −∂V

∂x
= x − x3 − k(x − h)Θ(x − h), (2)

V (x) = −x2

2
+

x4

4
+

k(x − h)2Θ(x − h)
2

, (3)

where we have taken x0 + h′ = h with x0 = 1 and h′ = −0.1.
In Fig. 2, we clearly observe the asymmetry induced by the additional linear spring with clearance

(curves (b) and (c)) with respect to the smooth restoring force case (curve (a)). Notice that the solid red
curve represents the symmetric double well potential.

In order to understand better the behavior of our system, we show numerical plots of both, trajectories
in phase space and Poincaré sections. For this purpose, we have taken the following values of the parameters:
α = 0.15, ω = 1 and F = 0.258. Figures 3(a) and 3(a’) represent both the typical chaotic trajectory and
the typical Poincaré section of the Duffing oscillator for the smooth case. Furthermore, we can see in Fig. 4
the bifurcation diagram of the x variable as a function of the forcing amplitude F , and we can see that
F = 0.258 is well into the chaotic region.

Figures 3(b) and 3(b’) show the same kind of plots for the non-smooth case for k = 0.2 and h = 0.3.
We can observe, in the right side (region in which x > 0) of Fig. 3(a’) and Fig. 3(b’), the effect of the
non-smooth term. Provided that the profile of the right well of the Duffing oscillator becomes steeper due
to the non-smooth term, we can see how both the right side of the trajectories and the attractor are slightly
compressed compared to the unperturbed case (Fig. 2).

In order to control the dynamics of this system we implement the phase control technique by adding a
external perturbation in the form ε sin(rωt+ϕ), where ε << F is the amplitude of the control, r a positive
constant, and ϕ the phase difference between the main driving and the control term. From now on we call
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Fig. 3. Numerical plots of both, phase portraits (x, y = ẋ) (Fig. a and Fig. b) and corresponding Poincaré sections (Fig. a’
and Fig. b’), for the Duffing oscillator case and for the non-smooth case with parameter values α = 0.15, F = 0.258, k = 0.2
and h = 0.3, respectively [Litak et al., 2012]. We observe the effect of the non-smooth term on the right side of the pictures:
in presence of non-smoothness, both the trajectories and the attractor look similar to the unperturbed ones, but their right
side is slightly compressed.

Fig. 4. Numerical bifurcation diagram (y = ẋ versus F ) of the Duffing oscillator in absence of the linear spring with clearance
(α = 0.15, k = 0.2, h = 0.3). We observe periodic regions and chaotic regions depending of the value of F . The onset of chaos
takes place at F ≃ 0.257.

it simply phase and it will be the main parameter of our control method. Once we introduce our control
scheme, the equation of motion of our system can be written as:

ẍ + αẋ − x + x3 + k(x − h)Θ(x − h) + ε sin(rωt + ϕ) = F sin(ωt), (4)

Since we are working in the context of a mechanical device, the control term ε sin(rωt + ϕ) is quite
natural and very easy to implement experimentally.
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3. Melnikov analysis

Here we provide, by using Melnikov analysis, theoretical arguments in order to show the different parameter
regions in which the system is in a chaotic regime or in a periodic regime and how the control scheme acts
on the dynamics of the system. The regions of transient and permanent chaos can be predicted by using
the perturbative Melnikov analysis [Moon & Li, 1985; Baltanás et al., 2002; Almendral et al., 2004].
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Fig. 5. (Color online) Homoclinic orbits of the corresponding unperturbed Hamiltonian in the phase plane (x, v = ẋ).

According to the Melnikov analysis we assume that the force and the damping parameter can be
treated as perturbations, so that we can rewrite:

F sin(ωt) + δF sin(rωt + ϕ) → ϵF̃ (sin(ωt) − δ sin(rωt + ϕ)), α → ϵα̃. (5)

Consequently, the equations of the system can be written as:

ẋ = v, (6)
v̇ = x − x3 − k(x − h)Θ(x − h) = ϵ(−α̃ẋ + F̃ (sin(ωt) − δ sin(rωt + ϕ))). (7)

Thus, the unperturbed Hamiltonian, i. e., in absence of both forcing and damping, reads:

H0 =
v2

2
− x2

2
+

x4

4
+ k

(x − h)2Θ(x − h)
2

. (8)

The homoclinic orbits needed for the Melnikov method are obtained by integrating out the following
expression:

dt

dx
=

1
v

=
1√

2V (x)
. (9)

Thus, we obtain:

t − t0 =
1√

x2 − x4

2 − k(x − h)2Θ(x − h)
. (10)
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In case of the typical double-well potential and for the right hand side half-plane x < 0, we can easily
integrate the above expression to the analytic formula:

x∗(t) = ±
√

2
cosh(t − t0)

, v∗(t) = ±
√

2 tanh(t − t0)
cosh(t − t0)

. (11)

x=0

d

w

wu

s

Fig. 6. A schematic picture of unperturbed (plotted with a dotted line) and perturbed homoclinic orbits (stable Ws and
unstable Wu manifolds plotted with full lines). The distance between Ws and Wu is d. And x = 0 indicates the location of
the saddle point.

The unperturbed Hamiltonian and the the homoclinic orbits are presented in Fig. 3.
After adding perturbations, the homoclinic orbits split to the stable and unstable manifolds, denoted

by Ws and Wu, respectively. The existence of cross-sections between Ws and Wu manifolds signals the
Smale horseshoe scenario of transition to chaos (see Fig. 3). Consequently, the distance d between the
invariant manifolds can be estimated in terms of the Melnikov function since d ∼ M(t0):

M(t0) =
∫ ∞

−∞
h0(x∗, v∗) ∧ h1(x∗, v∗)dt, (12)

where ∧ defines the wedge product (dx ∧ dv = −dx ∧ dv, dx ∧ dx = dv ∧ dv = 0). The corresponding
differential forms h0 means the gradient of the unperturbed Hamiltonian

h0 = (−x∗ + (x∗)3 + (x − h)Θ(x∗ − h))dx + v∗dv, (13)

while h1 is a perturbed Hamiltonian

h1 = (F̃ (sin(ωt) − δ sin(rωt + ϕ))) − α̃v∗)dx. (14)

It is important that all differential forms in the above expressions are defined on the homoclinic orbits
(x, v) = (x∗, v∗). Thus, the Melnikov function M(t0) reads:

M(t0) =
∫ ∞

−∞
v∗(F̃ (sin(ωt) − δ sin(rωt + ϕ))α̃v∗)dt. (15)

A condition for a global homoclinic transition, corresponding to a horseshoe type, can be written as:∨
t0

M(t0) = 0 and
∂M(t0)

∂t0
̸= 0. (16)

The above condition is valid [Guckenheimer & Holmes, 1983] for smooth potentials belonging to the
C2 class (V ∈ C2).

On the other hand, for the nonsmooth case, for k ̸= 0 (Figs. 2 and 5), the analytic treatment is difficult,
but the corresponding Melnikov criterion (Eqs. 11-15) could be found numerically [Litak et al., 2012]. Note
that in this situation the potential is not smooth enough as it belongs to the C1 class functions. Thus,
according to Kunze and Küpper [2001] there would be corrections related to the singular points associated
to the non-smoothness x = h. However, the above corrections are more important for a precise estimation
of the homoclinic bifurcation. In our case, we solve the integral numerically, and our approximation will
include Kunze and Küpper corrections [2001] within the integration error. It should be noted that we give
corrections, in some sense, by averaging the integral kernel for different limits x → h.
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Fig. 7. (Color online) The numerically estimated critical surfaces η = F/α versus ω that separate the regular (below the
curves) and chaotic (above the curves) parameter regions for k = 1 and h = 1.0. The control phase ϕ was chosen as ϕ =
1/4, 1/3, 1/2, 1, 2, 3 for (a),(b), ..., and (f) (respectively).

Finally, from Eqs. 14 and 15, the critical region of the ratio η = F̃ /α̃ = F/α as a function of ω can be
estimated as

η(ω) = min|I1/I2(ω)|, (17)

where the integrals I1 and I2 have the following forms

I1 =
∫ ∞

−∞
(v∗(t))2dt and I2 =

∫ ∞

−∞
v∗(t)(sin(ω(t + t0)) − δ sin(rω(t + t0) + ϕ))dt (18)

The condition for the second potential well on the left hand side in Fig. 2 with a smooth heteroclinic orbit
(Fig. 5) can be expressed analytically as for the case k = 0. Introducing v∗(t) into Eq. 17 [Holmes , 1979;
Guckenheimer & Holmes, 1983] we integrate:

I1 =
4
3
, I2 =

√
2πω

cosh(πω/2)
sin(ωt0) − δ

√
2πrω

cosh(πrω/2)
sin(rωt0 + ϕ). (19)

For r = 1 the above formula can be easily simplified by choosing the free integration parameter t0 in
such a way that max| sin(ωt0 + α)| = 1 (where sinα = −δ sinϕ/

√
1 + δ2 − 2δ cos ϕ).

Thus I2 can be written as

(I2)max =
√

2πω

cosh(πω/2)

√
1 + δ2 − 2δ cos ϕ. (20)

Finally, for the condition for the left side potential well (Fig. 2), η(ω) (Eq. 16) could be expressed
analytically as

η(ω) =
2
√

2

3πω
√

1 + δ2 − 2δ cos ϕ
cosh(πω/2). (21)

The condition for the right hand side potential well (nonsmooth case) in Fig. 2 (for k = 0.450, h = 1)
has been computed numerically. By changing the h we could see the effect of an additional spring on the
dynamics (Fig. 1). The results of the Melnikov analysis are presented in Fig. 7.
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Fig. 8. Numerical plots trajectories in the phase plane (x, y = ẋ) of the system without control (Fig. a) and with control
(Fig. b). Parameter values are: k = 0.45, h = 1, F = 0.258 and the control parameters are ε = 0.1 and ϕ = π. We observe the
clear influence of the phase to control the dynamics of our system.

Fig. 9. Numerical bifurcation diagrams of the variable x versus F ((a) and (b)) for k = 0.45 and h = 1 (a) without control
(b) with control parameters: ε = 0.2, ϕ = π. Numerical bifurcation diagrams of the variable x versus ϕ/2π ((c) and (d)). (c)
F = 0.3 without control and (d) F = 0.3 with control parameters ε = 0.2 and ϕ = π.

4. Numerical simulations

We have carried out some numerical simulations showing a very good agreement with the analytical results
shown previously. We have simulated the mathematical model by using a 4th order Runge-Kutta integration
scheme [Burden & Faires, 1997]. Trajectories in phase space in both cases without control and with control
are presented in Fig. 8. Figures 8(a) and 8(a’) show a chaotic trajectory for h = 1 and k = 0.2. If we
increase the value of k, say k = 0.7, the influence of the linear spring becomes relevant since the chaotic
motion disappears and it becomes periodic falling into an attractor, as shown in Fig. 8(b’). It seems then
that there is a critical value of k for which a periodic attractor close to the right well of the system appears,
making the orbits become periodic.

Figures 9(a) and 9(b) provide a deeper insight on this phenomenon. In Fig. 9(a), a bifurcation diagram
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Fig. 10. (Color online) Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for (a) F = 0.3, k = 0.45
and h = 0.1 without control in which chaotic motions take place, (b) F = 0.26, k = 0.45 and h = 0.1 in which the regular
motions take place. (c) and (d) with control (ε = 0.2) (c) ϕ = π and (d) ϕ = 0. Finally, we observe the important influence of
the phase since the basin structure is altered by the phase effects.

of the system of x versus F with non-smoothness parameters k = 0.45 and h = 1, we can see that for small
forcing the system displays periodic behaviour, since the linear spring induces a regular behavior into the
system. But as F is increased, chaos arises in what seems to be an inverse saddle-node bifurcation. Saddle-
node bifurcations are widespread in dynamical systems, for example it is the bifurcation that gives rise to
the period-three window in the logistic map [Robinson, 2004]. In Fig. 9(b), we show the bifurcation diagram
of the variable x versus k for h = 1 and F = 0.258. We see that the system is chaotic until the value of k is
too large and a periodic attractor arises in the right well, so the pre-existing chaotic attractor disappears
through a saddle-node bifurcation. An energetic interpretation can be provided for this phenomenon: when
adding the non-smooth stiffness, the system does not change drastically its behaviour until k is sufficiently
large, when an attractor arises that stabilizes the orbit. After this, the system can be driven again to the
chaotic state by increasing the forcing amplitude F .

The bifurcation diagrams of x versus ϕ shown in Figs. 9(c) and 9(d) for k = 0.45 , k = 1, h = 1,
respectively, for the uncontrolled case (Fig. 9(c)) and for the control case with ϵ = 0.2 and r = 1. We
clearly observe the strong influence of the phase in the taming of the dynamical behavior of our system.
Values of phase ϕ induce both chaotic behavior with possible coexistence of several attractors and regular
motions according to Fig. 4(d).

In order to have a better understanding of these results we have plotted the basins of attraction for
different situations.

Figures 10(a) and (b) represent, for α = 0.15, ω = 1, h = 0.1 and k = 0.45, the typical basin of
attraction of the Duffing system [Aguirre & Sanjuán, 2000; Aguirre et al., 2009] in presence of the linear
spring without control for F = 0.26 and F = 0.3, respectively. We observe the effect of the forcing in
the sense that we can observe a transition from a chaotic regime (Figure 10(a)) to a non-chaotic regime
(Figure 10(b)) insofar we increase the value of the forcing amplitude. The chaotic attractor (denoted in
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Fig. 11. (Color online) Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for r = 1/2, ε = 0.2,
(a) ϕ = 0, F = 0.26, k = 0.45 and h = 0.1 in which regular motions take place, (b) ϕ = 0, F = 0.30, k = 0.45 and h = 0.1 in
which the topology is rather complicated since the boundaries of the basins are fractal. (c) and (d) with ϕ = π. Finally, we
observe the effects of the phase since the boundaries can be fractal or a complete predictable scenario can appear.

green color) is destroyed and the motions become regular as clearly shown in the bifurcation diagram in
Fig. 4(b).

We have also analyzed numerically the effects of control on the dynamics of the system for different
values of the frequency.

Figures 10(c) and (d) show, in presence of control ε = 0.2 and F = 0.26, the effect of the phase ϕ in
the case of resonant frequencies, r = 1, between the main driving and the control term. We easily observe
the importance of the phase in both the dynamics and the topology of the system. The chaotic attractor
is smeared as we can see Fig. 10(c) when ϕ = π. On the other hand, the existence of multiple attractors
takes place for the value ϕ = 0 as depicted in Fig. 10(d). In this last case, the topology of phase space is
quite complicated and the basins possess the Wada property [Aguirre et al., 2009] and the system becomes
unpredictable.

In order to provide more evidence of the phase control scheme,in both the dynamics and the topology
of the system, we have also considered its effects for the cases of non-resonant frequencies, r ̸= 1.

Figures 11(a-d) show, the basins of attraction for the case r = 1/2 and ε = 0.2. The other parameters
are fixed as follows: k = 0.45, µ = 0.15, ω = 1 and h = 0.1. Figures 11(a) and (b) represent the case of
ϕ = 0 and E = 0.26 and E = 0.3, respectively. Figure 11(a) shows the existence of regular and periodic
motions in which the system is completely predictable and the boundaries between the basins are smooth.
In contrast, in Fig. 11(b) the topology is completely different. The boundaries between the basins are fractal
and the system becomes unpredictable in several regions of phase space. On the other hand, Figs. 11(c)
and (d) represent the case of ϕ = π and E = 0.26 and E = 0.3, respectively. The role of the phase ϕ
is quite relevant since the structure of phase space is completely different as in the case in which ϕ = 0.
Figure 11(c) represents the erosion of one of the basins in which we can observe small regions in phase
space in which the dynamics of the system is unpredictable. Insofar we increase the value of the energy, say
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Fig. 12. (Color online) Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for r = 2, ε = 0.2, (a)
ϕ = 0, F = 0.26, k = 0.45 and h = 0.1 in which chaotic motions take place and where we can observe the chaotic attractor
denoted in green color, (b) ϕ = 0, F = 0.30, k = 0.45 and h = 0.1 in which the topology is very simple since all motions are
regular or periodic. (c) and (d) with ϕ = π. Finally, we clearly see the relevant effects of the phase since the boundaries can
be smooth with a complete predictable scenario from a dynamical point of view or phase space can have fractal structure,
respectively.

E = 0.3 (see Fig. 11(d)), the phase space has one single attractor and all orbits are regular and periodic.
These numerical results are in complete agreement with the Melnikov analysis shown in Figs. 7(b).

In the last part of this section, we analyze the influence of a non resonant situation, that is, r = 2.
Figures 12(a-d) show the basins of attraction for the case r = 2 and ε = 0.2. The other parameters are
fixed as follows: k = 0.45, µ = 0.15, ω = 1 and h = 0.1.

The existence of a chaotic attractor in Fig. 12(a) is clearly modified for the value ϕ = 0 (see Fig. 12(b))
when we change the forcing amplitude from F = 0.26 to F = 0.3, where all orbits are periodic or regular
according to Fig. 12(c). On the other hand, regular motions take place for the value ϕ = π and F = 0.26,
becoming the system completely predictable according to its smooth boundaries. However, for F = 0.3, the
phase space topology is rather complicated possessing fractal structures and multiple attractors for which
the prediction is quite difficult, as shown in Fig. 12(d).

It should be also noted that the Melnikov criterion indicates rather the appearance of both the basin
boundary destruction and also chaotic motion. This effect can be visible in Figs. 10, where the basins of
attraction for three values in the vicinity of critical conditions that corroborate the results presented in
Fig. 7 are shown. The different surfaces represent the existence of chaotic or regular motions for different
values of the phase ϕ which are also in complete agreement with the numerical results presented in this
section.

5. Conclusions and discussion

Our results show that the non-smooth systems can be controlled by using the phase control technique. For
that purpose, we propose to rely on the numerical integration of the Melnikov integral in which we present
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results on the effects of the phase difference between the main driving and the control.
The numerical bifurcation diagrams elucidate us clearly the role of F , k and ω for which the onset

of the chaotic motions takes place and their control through the phase difference between both signals.
Besides, by analyzing the different numerical bifurcation diagrams we conjecture both, the appearance and
destruction of different attractors. This last result is corroborated by analyzing the evolution of the basin
of attraction for different values of η. The basins of attraction show the creation and destruction of the
different attractors for values of η close to the critical points where the dynamics changes from periodic to
chaotic or viceversa.

Finally, we think that these results obtained in non-smooth systems including the clearance and dry
friction phenomena to have important and relevant implications in problems of control in Engineering
[Radons & Neugebauer, 2004].
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