Chaotic Vibrations of the Duffing System with Fractional Damping
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We examined the Duffing system with a fractional damping term. Calculatidpaisins of attraction, we
demonstrate a broad spectrum of non-linear behaviour connectedenitftigity to the initial conditions and
chaos. To quantify dynamical response of the system, we propostatiggical 0-1 test as well as the maximal
Lyapunov exponent; the application of the latter encounter a few difficidgeause of the memory effect due
to the fractional derivative. The results are confirmed by bifurcatiagrdms, phase portraits and Poir&car

sections.

The concept of fractional derivatives goes back to a dis-
cussion that Leibniz and L'Hospital had over 300 years
ago about the half order derivative. The problem attracted
attention of many scientist (see Podlubny [1] and Petras [2]
and references therein). Generally, it is assumed that the
fractional order derivative is useful for a better descrip-
tion of real phenomena. For example, damping in mechan-
ical devices is commonly modeled as a function (linear or
nonlinear) of first order derivative and can be replaced
by fractional damping (in some cases with an appropriate
physical meaning). To solve a fractional differential equa
tion, one has to approximate the corresponding derivative
operator, which means including information about previ-
ous states of the system (the so-calledemory effect). This
effect introduces additional degrees of freedom. Such mul-
tidimensional dynamical systems meet difficulties in non-
linear analysis and require a special treatment for chaos
detection.

. INTRODUCTION

Systems with fractional damping, that depends on the ve-

plied to the problem of shock interactions of an impactohwit
a rigid target [14], to study visco-elastic properties oalves,
plates and cylindrical shells [7], to tune of the proporébn
integral-derivative (PID) controller and to model heatdoo-
tion in complex materials [8]. Finally, fractional derizads
were also used to optimize evolutionary algorithms [8].
Previous researches on the Duffing system with a fractional
damping term [5, 6] were focused on the influence of the order
of the derivative or amplitude of the excitation on the dyram
ics of the system. In the present paper, we demonstrate that
the system is sensitive to initial conditions, which can be a
certained by determining basins of attraction. Moreover, w
quantify different types of attractors by the 0-1 test theat c
be used instead of the Maximal Lyapunov Exponent (MLE).
Contrary to the MLE, the 0-1 test does not need any phase
space reconstruction. The main advantage of the test is its
fairly low computational effort. It is based on the dynantica
system properties of frequency distribution and, like resvp
ous approaches [15, 16], it originates from a single frequen
transform.

Il. THE MODEL

locity history, have generated a lot of interest and were ex-

tensively studied in the last decade [3—9]. Actually, to eiod

We start with the standard well known nonlinear Duffing

complex energy dissipation with a minimum number of pa-equation:

rameters using hysteresis and/or memory effect, a fraation
order derivative damping term is proposed, namely, the damp

ing force is proportional to a fractional derivative of this-d
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placement, in contrast to the classical case (first ordévater wherea > 0 denotes the damping coefficientdenotes the
tive of the displacement). The memory of the system wasmplitude andv denotes the frequency of external excitation.
found to be an important factor in different research area§he model describes the dynamics of a mass in a double po-

[7, 8].

For instance, the problem of non-viscous dampingtential well and exhibits chaotic behaviour [17, 18]. To in-

with hysteresis has been investigated in the context ofi-appltroduce a fractional derivative to the dynamical systens, th
cations for a magnetorheological fluid [10]. Similarly, ghi widely used Giinwald-Letnikov and Riemman-Liouville def-
concept was used to model damping in a vehicle tire [11] andhitions are applied. Both of them are particular cases of a
in plates made of composite materials [12, 13]. Furthermoregeneral fractional order operator - namely, the formereepr
the memory modelled by fractional derivatives was also apsents the; order derivative, while the later represents the



fold integral. In this sense, the class of functions desctiby The set of equations can be written in the discretized form
the Riemman-Liouville definition is broader (function must by the following fractional order Newton-Leipnik algorith

be integrable) than the one defined byi@wald and Letnikov  [2]:

(function must ben + 1 continuously differentiable). How-

ever, for a function of the Gnwald - Letnikov class, both

definitions are equivalent. z(ty) = x(tp_1) +y(te_1)h 10
Introducing the first order derivative, we will briefly (te) (i) + () (10)

N-1
demonstrate the idea of noninteger derivative. Let us densi _ a_ (a) 4
the first and second order derivative: o) = wite—1)h = ¢ wth=s) (11)
@) = %in%) W ) y(ty) = y(te—1) + [aw(ty—1) — 2°(tr—1) (12)
= P + dcos (w(tg—1))]h,
() = Jim (3)
o whereh is the integration step and the coefficiecy&@ satisfy
= lim f) — 27 _h};) + f(t—2h) the following recursive relations:
h—0
Continuing, one can write a general form of theh order 1+g¢
derivative: =1, 4= (1 i ) o2, (13)
() =1 €L Zn: (—1) ")f(t—jh) neN (@)
 h—0 hm A j J
3=0 15
which leads to the Ginwald - Letnikov definition [1]:
1 -
dif
Pl =. D{f(t) 5) o5k
1 [%] (q > 0
o L Y .
tim o S (<17 (1) 16 m)
j=0 05
whereg > 0 and the binomial coefficients can be extended to Al
real numbers using the Euler Gamma function
-1.5
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a pair of square brackefg appearing in the upper limit of FIG. 1. The phase portraits and Poirgoint for the period one

; e numerical solution of Egs. (10) - (12) with = 0.6, « = 0.15,
tmh:rrs;gg]/ c:ggg;i?iégﬁllnteger part, whilés the length of the § = 0.3 andw = 1.0 for the initial conditionsxo, o) = (0.2,0.3).

According to the short memory principle [1, 2], the length
of system memory can be substantially reduced in the numer-

ical algorithm to get reliable results. Thus, Eq. (5) beceme 15
1 N q 1t
q _ . 7 _ ] s
D110 = fim i Y (Y se-m.
7=0 0.5
whereN () = min(‘5£, £). Note that by this choice we do -~ o}
not need initial conditions before= 0, as is usually required
for other systems with memory. Now, the Duffing system with 05 f
a fractional damping term has the following form:
1
d*x diz 3
— t+a—— —x+x° = cos (wt (8) . , . . . . . .
dt2 dtd ( ) 1'5-2 -15 -1 -0.5 0 0.5 1 15 2

Equation (8) can be decomposed into a set of equations of

lower degree: FIG. 2. The phase portraits and Poiraections for the period two

LDlz(t) = y(t) numerical solution of Egs. (10 - 12) with= 0.8, « = 0.15,6 = 0.3
h - _— i, h
D (1) ) ) andw = 1.0 for the initial conditiongzo, yo) = (0.2, 0.3).

1Diy(t) = z(t) + aw(t) — 23(t) + d cos (wt)
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FIG. 3. The phase portraits and Poireaections for the chaotic FIG. 4. The bifurcation diagram of thecoordinate versus the order

numerical solution of Egs. (10 - 12) with= 1.0, « = 0.15,5 = 0.3 of the derivativey € [0.01, 2.0]; Ag = 0.001 and initial conditions

andw = 1.0 for the initial conditiongzo, yo) = (0.2, 0.3). for eachq were(zo,yo) = (0.2,0.3). Other system parameters are:
a=0.15,§ = 0.3, andw = 1.0.

Note that by comparing the left hand sides of Egs. 10 and |v. TEST 0-1 FOR PERIODIC AND NONPERIODIC
11 we get the formula: SOLUTIONS

To quantify the results obtained, we use the 0-1 test for
1 (q) chaos detection [19-26]. This test combines both speatidhl a

w(te-1) = ﬁ[x(tk—l)ﬂ(tk—l)“ Z ¢; @ (te—5))(14) gtatistical properties of the system and can distinguifbrdi

g=1 ent types of dynamic of the system by computing a number

K €{0,1}.

which can be used in Eq. (12). Below, a briefdescriptipn of the test 0-1 is reported. Fofst
all, we change the coordinates frdm, i) to a new setp, q)
"Yefined as follows

N-1

The set of equations Egs. (10-12) has been solved nume
cally for the system parametesis= 0.15, § = 0.3, w = 1.0

and with initial conditiong(xg,yo) = (0.2,0.3). The phase _ L » _ S

portraits for the order of the derivative= 0.6, 0.8, 1.0 (the p(n) = Z‘TJ cos (je), gq(n) = Zxﬂ' sin (je),  (15)
integration step waé = m/100) are plotted in Figs. 1 - 3, =t =t

respectively. wherez = [Z1, 2, 73, ...| iS the discrete time series sampled

Analyzing Figs. 1 - 3, one can notice the evolution of thefrom the originally simulated using one-fourth of excitation
solution with increasing: from period one to period two be- Period (as in [27]). The time intervdl/4 (T' = 27 /w) corre-
haviour through a period doubling bifurcation, to non-pdic spon_ds to the nodal autocorrelation function of_excnahan
(chaotic) solution. Note that foy = 1.0 the coefficients Monic termdcos(wt). Note that, relevant sampling can make
¢; =0, j=1,.,n(EQ. 13) and we get the standard double-shorter the length of time series used in the calculatidnss t

well Duffing model without the memory effect. leading to a reduction in the computation time. Finadlys
constantc € (0, 7). One can see that Eq. (15) resembles the

Fourier transform for a chosen frequency (in the limit ofler

In the next step, one computes the Mean Square Displace-
lll. BIFURCATIONS CAUSED BY THE ORDER IF THE ment (MSD) ofp andg:
DERIVATIVE
n—j
A more systematic analysis of the system behaviour and of MSD(c, j) = L Z {lp(i + j) — p(i)]?
its evolution by changing the order of the derivativean be n—J5i3
performed by using a corresponding bifurcation diagram. In +q(i + ) — q(i)]Q} 7 (16)

Fig. 4 one can clearly see the regions;dbr which the sys-

tem response changes from non-periodic to periodic througtvhere0 < j < n (in practicen/100 < j < n/10). The

a period doubling cascade, and again to non-periodic (fr thmain criterion is based on the trends of M@Dj) in the
same initial condition(zo,yo) = (0.2,0.3)). Note that for higher j limit. It is bounded for regular dynamics or un-
q = 1 we get a non-periodic solution corresponding to the sobounded for chaotic dynamics[19-26].

lution for the standard Duffing model with a viscous damping The final quantity/ is calculated as an asymptotic growth
term. rate of MSD (here given by the correlation method):



Cov[j, MSD(e, )]

K(c) = _ . _ 0.6
v/Cov[j, j] - Cov[MSD(c, j), MSD(c, j)] 05

(7) 0.4

where j is based on a series of natural numbers: = w 03

n/100,7/100 + 1...,n/10, and Covf,y] denotes the corre- 3 %2

sponding covariance of two series where for the same argu- 2
mentsz = y we get variance, while for a differenty( = j 0
andy = MSD(c,j)) it can be expressed as the expectation  -0.1
value E[.]: 0.2

Cov[j, MSD(c, §)] = g
E[[j — E[j]] - [MSD(c, j) — E[MSD(c, j)]]]. ~ (18)

Unfortunately, the final valuél might differ for different

values ofc, so we took100 values ofc equally spaced from FIG. 6. Maximal Lyapunov Exponent as a function of the fractional

. . orderg € [0.01,2.0] andAg = 0.001. The distance between neigh-
the interval(0.1, 7 —0.1) and computeds as the median. An bouring trajectories has been estimated in one tenth of the excitation

example pf the functiork{ (¢) obtained with this algorithm is period intervall’ (T’ = 27 /w). Other system parameters:= 0.15,
reported in Fig. 5. 5 = 0.3, andw = 1.0.

i = 1,..., N, wherei denotes the subsequent interval which

L - - - is fairly smaller with respect to the excitation period. &y,
’ the approximated exponent can be estimated via the follpwin
0.8 . summation
0.6 E 1 N
“ s ] MLE = + > In(d/d), (19)
i=1
02 T . . . . .
where the time interval id\¢t = 27/(100w) and N is suffi-
0 — 3 ciently large.
0O 02 04 06 08 1 12 14 16 18 2 Note that the dimensionality of the examined system with
q fractional damping could increase; here, for simplicityg t

MLE was estimated in a two-dimensional phase sgace).
Figure 6 shows variations of the MLE with respect to the

. . — arameter;.
FIG. 5. K versusg with the samplingAg = 0.001, the initial con- P . .
ditions for eachy were: (zq, y0) = (0.2,0.3). Other system param- Analyzing the MLE results, one can Obse_rve fairly good
eters:o = 0.15, § = 0.3, andw = 1.0. agreement with the 0-1 test results in the intervalgofc

[0,1.5]. Beyond the valug = 1.5, the MLE is inconsistent
From both Fig. 4 and Fig. 5, one can observe regions Corwith the bifurcation diagram and 0-1 test results. Thisdipe
responding to the regular moti,of((% 0 for g € [0.1,0.8] U ancy corresponds to the lack of information about the degan
[1.45,2]) and regions corresponding to the chaotic motion!™ higher dimensions in the algorithm given by Eg. 19.
(K ~ 1, forq € (0.8,1.45)).

VI. BASINS OF ATTRACTION
V. MAXIMAL LYAPUNOV EXPONENT

In the previous section, we estimated the MLE testing sen-

We have also estimated the MLE, which is commonly usedkitivity of solutions to perturbations along the trajegtdor
to describe the type of the dynamical systems response. Igiven initial conditions. However, the global dynamicabp+
our system this number has no direct meaning as the systeetties of our Duffing model with fractional damping, showing
dimension could be undetermined. That is why one cannoa variety of solutions, can be investigated by basins chattr
use the standard Wolf algorithm with the Jacobi matrix [28],tions. The stability of particular solutions can be meadure
nor the Kantz algorithm with a phase space embedded frorhy the size of corresponding basins of attraction. We esti-
a time series [29]. Instead, we measured the distalte mated such basins for our system for three selected values of
between reference and test orbits, starting from distuiied derivative order of the damping termp:= {0.6,0.8,1.0} and
tial conditions with some arbitrary small initial distanég:),  the range of initial condition&zy, yo) € [-5,5] x [-10, 10].
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FIG. 7. Basins of attraction faf = 0.6, anda = 0.15, 6 = 0.3, FIG. 9. Basins of attraction far = 1.0 anda. = 0.15,5 = 0.3, w =

w = 1.0. The uniform colour covering the whole region of initial 1.0. Note that colours denote different solutions. Yellow - denotes

conditions corresponds to the global period one regular solution.  the period one regular solution while red - non-periodic (chaotic)
solution.

In Fig. (8) three different regions involving points beleng
ing to the boundaries of two other basins define Wada basins
[30, 31]. In this case the dynamics of the system becomes even
more unpredictable than these of fractal border separating
regions.

VIl. CONCLUSIONS

In the paper, we examined the dynamics of the Duff-
ing model with a fractional damping term. Using nonlin-
ear methods (phase diagrams, Poiacsections and bifurca-
tion diagrams), we highlighted significantly different tm
responses by varying the order of the derivative (from non-
FIG. 8. Basins of attraction fof = 0.8 andaw = 0.15, § = 0.3, integer to integer). We also quantified the type of motion by
w = 1.0. Note the colours denote the interplay of four different the values of two indicators: 0-1 test which is based on sta-
solutions. Yellow - denotes the period one regular solution; green antlstical properties of phase coordinate, and the appradma
blue - two different perlod two solutions; red - non- perlodlc (ChaOth) maximal Lyapunov exponent which is based on geometr|ca|
solution. properties of attractor in phase space. The fractionalrorde

of damping introduces memory effects that extend the dimen-

sion of the phase space. As a consequence of an uncertainty
Based on Figs. 7 - 9 one can compare the complexity of soin the dynamical system dimension, the maximal Lyapunov
lutions with respect to initial conditions and the partauat-  exponent values may not correspond to the properties of the
tractors distributions calculated for correspondingdyestate  attractor. In that case, the 0-1 method appeared to give more
solutions. adequate results. We also found sensitivity to initial ¢tonl

Figures 7 - 9 show significantly different dynamical be- in the considered system. Interestingly, different valiethe
haviour: forqg = 0.6 there is only one attractor that corre- order of damping change dramatically the basins of atwacti
sponds to the period one solution (Fig. 1), for= 0.8 there  from one attractor (periodic) to four attractors (periodigo
are four types of attractors: period one, period 2 type a. (Figdifferent period two solutions and none-periodic) exigt
2), period 2 type b and non-periodic, for= 1.0 there are Wada basins, and finally, to two attractors (period one and
two types of attractors: period one and non-periodic (fig. 3) non-periodic).

Moreover, comparing figures 8 and 9, one can observe very One should note that any system with a fractional derivative
similar regions of initial conditions corresponding to fhe-  is characterized by long transient intervals appearingreef
riodic solution (yellow) mixed with regions corresponditty  reaching the stationary state. This property complicaies t
different solutions: period two (green, blue - fig. 8) and non investigation of the system dynamics. We would like to stres
periodic (red). that our results for dynamics of the system were obtained aft
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