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Motion of self-excited Froude pendulum under external forcing were analyzed. Differential
equation of motion includes the nonlinear damping term of Rayleigh’s type. Using multiple time
scale method and Lyapunov theory, vibrations, synchronization and stability of the system were
examined. Chaotic motion was analyzed here by means of Lyapunov exponent and Melnikov
approach.

1. Introduction

Froude pendulum is an example of self-excited
system [Minorski, 1962; Moon, 1987; Litak et al.,
1994, 1996]. The system consists of pendulum
suspended on a rotating shaft (Fig. 1). Friction
between the shaft and the suspension causes the
self-excitation of the pendulum.

Vibrations of pendulum subjected to external
excitation can be described by the following differ-
ential equation:

ϕ̈− (α̃− β̃ϕ̇2)ϕ̇+ δ̃ sin ϕ = B̃ cos ωt , (1)

where α̃, β̃ denote nonlinear Rayleigh damping
term coefficients, B̃ excitation amplitude, ω excita-
tion frequency, δ̃ is the typical pendulum nonlinear
term coefficient dependent on the geometry of the
system.

Such a system is described by two charac-
teristic frequencies: the frequency of self-excited
vibration and the external excitation frequency.
For exciting force amplitude B̃ equal to zero
vibration with the same frequency as for a self-
excited system appears. For B̃ > 0, according
to the parameters of the system, it is likely to
occur as two cases of regular solutions: mono-
frequency solution or quasiperiodic solution with a

modulated amplitude. In such a system, besides
regular solutions, chaotic solutions may also appear
[Litak et al., 1994, 1996]. The aim of this note is
to provide general discussion on the vibration of
self-excited systems with external forcing by ana-
lyzing the example Froude pendulum. The article
is organized as follows: After a short introduction
(in Sec. 1) we analyze vibration in the vicinity of
fundamental external resonance (Sec. 2) and obtain
analytic forms of the solution. These results are
used in Sec. 3 where we provide an analysis of the
stability solution by applying Lyapunov theory and
we proceed with the discussion on the synchroniza-
tion phenomenon. The comparison between ana-
lytic and numerical simulation results is also given.
Section 4 is devoted to the Melnikov analysis of
Froude pendulum motion. The principal result of
this section is the analytic form of critical amplitude
B̃C above which chaotic solution exists. Numer-
ical calculations by means of Lyapunov exponent
method confirm these analytic results for a cho-
sen set of examined system parameters. Section 5
concerns the numerical exploration of chaotic mo-
tion of the examined system. We then investigate
chaotic motion using different methods. Lyapunov
exponent criterion is applied to find regions of
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Fig. 1. Frude pendulum, ω∗ — angular velocity, ϕ — vibra-
tion angle.

parameters indicating chaotic behavior. Some ex-
amples of Poincare maps, time histories, basins of
attraction and a power spectrum are plotted to il-
lustrate the types and the evolutions of attractors.
In Sec. 6 we end up with summary and conclusions.

2. Solution in the Vicinity of
Fundamental External
Resonance

Let us examine small vibrations around ϕ = 0,
expanding in Taylor’s series up to the third-order
terms sin(ϕ) ≈ ϕ − γ̃ϕ3, where γ̃ = (1/6)δ̃ yields
the following equation:

ϕ̈− (α− β̃ϕ̇2)ϕ̇+ (δ̃ − γ̃ϕ2)ϕ = B̃ cos ωt . (2)

For the fundamental external resonance we can
write:

ω2 ≈ δ̃ + εσ . (3)

Introducing the small parameter ε � 1 into
Eq. (2) and using the approximation (3) we get for
δ̃ = 1:

ϕ̈+ ω2ϕ = ε[σϕ+ (α− βϕ̇2)ϕ̇+ γϕ2)ϕ

+B cos ωt] , (4)

where β̃ = εβ, B̃ = εB, α̃ = εα, γ̃ = εγ.
Using the standard multiple-time-scale proce-

dure [Nayfeh & Sanchez, 1989] we decouple time
derivatives into:

d

dt
= D0 + εD1 + ε2D2 + · · · ,

d2

dt2
= D2

0 + 2εD0D1 + ε2(2D0D2 +D2
1) + · · · ,

(5)

where Dn = ∂/∂Tn and Tn = εnt.
We evaluate the general form of the solution

ϕ = ϕ(T0, T1, . . . ; ε) (6)

to the first-order approximation of type:

ϕ(t) ≈ a cos(ωt+ ψ) . (7)

After some algebra we have found the following
equations for a and ψ:

ȧ = ε

(
α

2
a− 3

8
βa3 − B

2ω
sin ψ

)
(8)

aψ̇ = ε

(
− σ1

2ω
a− 3γ

8ω
a3 − B

2ω
cos ψ

)
. (9)

The second-order approximation reads:

ϕ(t) = a cos(ωt+ ψ)

− ε
(
γa3

32ω2
− 3iβa3

32ω

)
cos(3ωt+ 3ψ) , (10)

where a and ψ have to fulfil the equations:

ȧ = ε
α

2
a− ε3

8
βa3 + ε2

3αγ

16ω2
a3 −

(
ε
B

2ω
+ ε2

σB

8ω3
+ ε2

9γB

32ω3
a2
)

sin ψ

+ ε2
(

3βBa2

32ω2
− αB

8ω2

)
cos ψ , (11)
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aψ̇ = −
(
ε
σ

2ω
+ ε

α2

8ω + ε2
σ2

8ω3

)
a−

(
ε
3γ

8ω
+ ε2

γσ

16ω3
− ε2 3αβ

8ω

)
a3 − ε2

(
15γ2

256ω3
+

63β2

256ω

)
a5

−
(
ε
B

2ω
+ ε2

σB

8ω3
+ ε2

3γB

32ω3
a2
)

cos ψ − ε2
(

9βB

32ω2
a2 − αB

8ω2

)
sin ψ . (12)

Equations (7)–(12) are the principal result of
that section. They will be used in the analysis
of the system stability and synchronization of the
pendulum motion with the external forcing in the
next section.

3. The Periodic Solution
Stability Analysis

The stability solution analysis was carried out by
using approximate differential equations of the first
order [Eqs. (8) and (9)] in a shortened form:

da

dt
= F1(a, ψ), a

dψ

dt
= F2(a, ψ) . (13)

Putting disturbances into Eqs. (13)

δ1 = ã(t)− a(t), δ2 = ψ̃(t)− ψ(t) , (14)

where ã(t) and ψ̃(t) are the solutions correspond-
ing to the insignificantly-changed initial conditions,
from which one obtains the differential equations of
disturbed motion. After subtraction of the undis-
turbed motion Eqs. (8) and (9) from the equations
of disturbed motion one gets other linearized differ-
ential equation for variations δ1 and δ2:

dδ1
dt

=

(
∂F1

∂a

)
0
δ1 +

(
∂F1

∂ψ

)
0

δ2 ,

dδ2
dt

=

(
∂F2

∂a

)
0
δ1 +

(
∂F2

∂ψ

)
0

δ2 ,

(15)

where

∂F1

∂a
=

(
1

2
α− 9

8
βa2

)
ε ,

∂F1

∂ψ
= −1

2

β

ω
cos ψε ,

∂F2

∂a
=

(
−1

2

σ

ω
− 3

4
γ
a2

ω

)
ε ,

∂F2

∂ψ
=

1

2

B

ω
sin ψε .

(16)

The subscript “0” indicates that the derivative val-
ues are taken in the equilibrium state. For assumed

solutions of type:

δ1 = C1e
ρt, δ2 = C2e

ρt , (17)

where C1 and C2 are arbitrary constants.
When substituting solutions [Eqs. (17)] in

Eq. (15) yields the following characteristic equation
for the variable ρ:

Det


(
∂F1

∂a

)
0
− ρ

(
∂F1

∂ψ

)
0(

∂F2

∂a

)
0

(
∂F2

∂ψ

)
0

− ρ

 = 0 . (18)

The stability condition in the Lyapunov formula-
tion [Szabelski & Warmiński, 1995] requires solu-
tion with negative real terms for ρ of the above
characteristic equation [Eq. (18)]. To proceed this
schema one must calculate values of ρ for each value
of ω. The results of such calculations are pre-
sented in Table 1. Figure 2 shows a plot of the
vibration amplitude versus the frequency of exter-
nal excitation ω. It has been obtained as a re-
sult of analytical research (AR) in the first-order
approximation of perturbation procedure [Eqs. (8)
and (9)]. Types of system stability for different ω
are also marked in this picture according to Table 1.
Comparative points obtained during numerical sim-
ulation by means of Runge–Kutta–Gill (RKG)
algorithm [Eq. (1)] were also marked.

Parameters used in the investigations are the
following: α̃ = 0.035, β̃ = 0.1, B̃ = 0.1, γ̃ = 1/6,
ε = 0.1. Beats are marked here by vertical lines
terminated by circles on the ends which correspond

Table 1. Vibration stability.

ω Type of Singularity

0.800–0.878 unstable focus

0.878–0.893 stable focus

0.888–0.892 saddle point

0.876–0.900 stable node

0.900–1.078 stable focus

1.078–1.150 unstable focus
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Fig. 2. Vibration amplitude a versus excitation frequency
ω. RKG denote the numerical results and AR the analytic
ones.

to the maximal and minimal values of vibration am-
plitudes (Fig. 2). In Fig. 3 we present examples of
time histories. The synchronized mono-frequency
vibration is shown in Fig. 3(b) (ω = 0.95). Out-
side the synchronization area beats, i.e. quasiperi-
odic vibrations occur. The typical time history in
this region is presented in Fig. 3(a), where ω was
chosen to be equal to 0.85.

4. Transition to Chaos,
Melnikov Analysis

Melnikov approach enables us to find critical values
of system parameters for which chaotic solutions
appear. This method is based on analyzing Smale
horseshoe schemes on phase plane. Starting our ex-
amination from Poincaré maps of Hamiltonian sys-
tem we investigate quasiperiodic orbits which begin
and finish at saddle points ϕ0

i , v
0
i , (v = ϕ̇). These

orbits are called homoclinic

lim
t→−∞

(ϕ1, v1) = lim
t→∞

(ϕ1, v1) = (ϕ0
0, v

0
0) (19)

and heteroclinic

limt→−∞(ϕ1, v1) = (ϕ0
1, v

0
1)

limt→∞(ϕ1, v1) = (ϕ0
2, v

0
2) ,

(20)

where (ϕ0
2, v

0
2) 6= (ϕ0

1, v
0
1).

In our case of the examined Frude pendulum,
the orbits correspond to heteroclinic ones unless we
identify points (ϕI , v) = (−π, v) and (ϕII , v) =
(π, v), and arbitrary v on phase plane using cylin-
drical ϕ coordinate. Analyzing Hamiltonian hetero-
clinic orbits we examine stable and unstable man-
ifolds introducing external force and damping as
perturbations. Equation (1) (for δ̃ = 1) may be

Fig. 3. Time histories for (a) ω = 0.85, (b) ω = 0.95.
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Fig. 4. StableWS and unstableWU manifolds for a damped
and excited system.

written as follows:

ϕ̇ = v

v̇ = − sin ϕ+ ε[(α− βv2)v +B cos ωt] ,
(21)

where ε denotes perturbation parameter.
In Fig. 4 stableWS and unstableWU manifolds

are presented schematically. Intersection points
indicate on Smale horseshoes schemes typical for
chaotic systems [Moon, 1987].

Nodal value of Melnikov function [Gucken-
heimer & Holms, 1983; Wiggins, 1988; Salam, 1987]
M(t) which determine the distance d between these

two manifolds is the criterion of chaotic solution
appearance.

d = M(t0) =

∫ ∞
−∞

h(ϕ∗, v∗) ∧ g(ϕ∗, v∗)dt (22)

where differential forms h = h1dϕ + h2dv and
g = g1dϕ + g2dv are defined as the gradient of un-
perturbed Hamiltonian H = (1/2)v2 + (1 − cos ϕ)
in phase plane and perturbation terms are g1 = 0,
g2 = (α − βv2)v + B cos(ω(t − t0)), respectively.
Stars marked by ϕ and v (ϕ∗, v∗) denote that forms
h and g are defined on heteroclinic manifolds of the
corresponding Hamiltonian system:

ϕ∗ = ±2tan−1(sinh t)

v∗ = ± 2

cosh t
.

(23)

After some algebra we find:

M(t0) = 8α − 64

3
β + 2π

cos(ωt0)

cosh(ωπ/2)
B . (24)

The condition of chaotic solution occurrence
[Guckenheimer & Holms, 1983; Wiggins, 1988] has
following form

∃t0 M(t0) = 0,
∂M(t0)

∂t0
6= 0 . (25)

Fig. 5. Critical amplitude BC = B̃C versus excitation frequency ω for (a) α̃ = 0.35 and (b) α̃ = 0.035. Lines correspond to
analytic solution and diamonds to numerical simulations.
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Fig. 5. (Continued )

Thus, the critical amplitude of the external
forcing, for which condition (16) is fulfilled is shown
as follows:

B̃C =
4

π

∣∣∣∣α̃− 8

3
β̃

∣∣∣∣ cosh(ωπ2
)
. (26)

The condition for a simple damped mathematical
pendulum with external forcing has similar form.
In such a system instead of the factor |α̃ − (8/3)β̃|
we write simply α̃.

In Fig. 5 we show critical amplitude B̃C as a
function of external forcing frequency for two sets
of damping coefficient values α̃ = 0.35, β̃ = 0.1
[Fig. 5(a)] and α̃ = 0.035, β̃ = 0.1 [Fig. 5(b)]. For
B̃ > B̃C solution of the chaotic type may occur
while for B̃ < B̃C solution should be of the regu-
lar type. Comparative points for B̃C obtained by
numerical simulations by means of Lyapunov ex-
ponent method (Sec. 5) are depicted by diamonds.
Note that numerical results give usually larger
values of critical amplitude B̃C than analytic ones
[Moon, 1987].

5. Analysis of Chaotic Motion

The most reliable criterion for chaotic determinis-
tic motion is the positive value of the maximal (but
nonzero) Lyapunov exponent. Figure 6 presents the
results values of Lyapunov exponents λ1 versus ex-
citation amplitude B̃ calculated by Wolf et al.’s al-
gorithm [1988]. For numerical simulations [Eq. (1)],

the following parameters: δ̃ = 1, ω = 1, β̃ = 0.1,
α̃ = 0.35 [Fig. 6(a)] and α̃ = 0.035 [Fig. 6(b)]
the initial conditions: ϕ0 = 0, ϕ̇0 = 0.5 have
been used.

For intervals around B̃ ≈ 2.5 chaotic motions
of pendulum have been found in both cases (α̃ =
0.35, α̃ = 0.035). The additional interval around
B̃ ≈ 0.45 for α̃ = 0.35 shows the chaotic behavior
which is absent in the case of smaller α̃. For four
values of the external amplitude B̃: B̃ = 0.1, 0.42,
1,2, 2.5, Poincaré maps are presented [Figs. 7(a)–
(d)]. Each picture has been obtained using a num-
ber of sets of initial conditions. Other parame-
ter values of the system have been chosen as in
Fig. 6(a). In calculations points (−π, v) and (π, v)
(for arbitrary v) have been identified. Starting from
small forcing, Fig. 7(a) shows regular quasiperiodic
motion. This is connected with the self-excitation
of the pendulum. Note that the limit cycles are
not connected and form the separate upper and
lower branches. They correspond to different ini-
tial conditions used in simulations. For a larger
forcing amplitude Figs. 7(b) and 7(d) illustrate the
strange attractors of pendulum chaotic motion and
Fig. 7(c) mono-frequency synchronized motion rep-
resented by the singular point.

In Fig. 8, for the same system parameters we
present two different bifurcation diagrams accord-
ing to different initial conditions [corresponding to
the upper and lower branches of Poincaré maps
in Fig. 7(a)]. Here again B̃ was treated as a



Fig. 6. The maximal Lyapunov exponent λ1 versus external amplitude B = B̃: α̃ = 0.35 [Fig. 6(a)], α̃ = 0.035 [Fig. 6(b)].

Fig. 7. Poincaré maps. B̃ = 0.1, 0.42, 1.2, 2.5 for 7(a)–7(d), respectively.
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Fig. 8. Bifurcation diagrams for initial conditions: (a) (ϕ0, v0) = (0, 1.0) and (b) (ϕ0, v0) = (0, 0.5).

Fig. 9. Time histories for: B̃ = 0.1 and the initial conditions (a) (ϕ0, v0) = (0, 0.5), (b) (ϕ0, v0) = (0, 1.0); (c) B̃ = 1.2 and
(d) B̃ = 2.5 for the initial conditions (ϕ0, v0) = (0, 0.5).
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Fig. 10. Power spectrum for B̃ = 2.5.

bifurcation parameter. Figure 8(a) corresponds to
following initial conditions: ϕ0 = 0, v0 = 1.0 and
Fig. 8(b): ϕ0 = 0, v0 = 0.5, respectively. Thus the
regular motion of Froude pendulum could be syn-
chronized with external forcing for B̃ ∈ [0.23, 0.4]
and [0.48, 1.0] or quasiperiodic for B̃ ∈ [0.0, 0.23].
This picture also confirms our earlier exploration by
Lyapunov exponent [Fig. 6(a)].

For better clarity time histories which corre-
spond to various types of motion have been plotted
in Fig. 9. Figures 9(a) and 9(b) show evidently
the left and right quasiperiodic rotations. Note
that time histories are plotted for velocities v = ϕ̇
(Fig. 9) instead of angles ϕ (Fig. 3). In these pic-
tures one can see oscillations of ϕ̇ in time in a nar-
row region of velocities without the change of sign.
On the other hand the periodic motion of pendulum
is presented in Fig. 9(c) for B̃ = 1.2. Here we recog-
nize the full spectrum of velocities with both signs
changing in the periodic way. This means that the
motion has been synchronized with external forcing.
Applying the same analysis for B̃ ∈ [0.23, 0.4] (see
Fig. 8) we have also checked that in this interval of
amplitude B̃, right and left rotations synchronized
with the external forcing frequency appeared.

The last time history [Fig. 9(d)] corresponds
to the chaotic motion of the pendulum B̃ = 2.5.
For this value of external amplitude the pendulum
shows nonperiodic oscillations. This nonperiodicity
is better visible in Fig. 10 where we have plotted
the power spectrum for the same system parame-
ters. The broadened interval of frequencies refer
here to chaotic motion instead of individual frequen-
cies which always represent a regular motion.

Additionally Fig. 11 presents the basins of at-
traction for rotational and chaotic motions of the
pendulum (ω = 1, α̃ = 0.35, β̃ = 0.1, δ̃ = 1).

(a) (b)

Fig. 11. Basins of attraction for (a) B̃ = 0.1 and (b) B̃ = 2.5.
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In Fig. 11(a) (B̃ = 0.1) one can recognize the ini-
tial conditions which lead to left (empty space)
and right (black points) rotations of the pendulum.
They are placed alternately in the phase plane (ϕ0,
ϕ̇0). The border separating these two regions is
well defined. Figure 11(b) corresponds to chaotic
motion. In this picture there is no border between
two basins of attraction. The picture also has self-
similar structures in different scales.

6. Summary and Conclusions

Analytic and numerical investigations were carried
out for Froude pendulum. The synchronization
region was obtained under certain simplified as-
sumptions and their verification was obtained ap-
plying numerical simulation. Chaotic vibrations
and quasiperiodic rotation of pendulum was investi-
gated by means of Melnikov criterion and Lyapunov
exponent, Poincaré maps and bifurcation diagrams
and power spectra for particular parameters of the
system.

The structures of strange attractors of Frude
pendulum is similar to that of a simple mathe-
matical one [Baker & Gollub, 1990]. However we
noticed some differences in scenario for transition
to chaos. We found that quasiperiodic vibrations
appear outside the synchronization region for small
α̃ [Fig. 1(b)] while quasiperiodic rotations appear
for large enough α̃ [α̃ = 0.35 — Figs. 7(a), 9(a)
and 9(b)]. We have shown in Fig. 2(a) that for the
region of relatively small external excitation B̃,
where quasiperiodic rotations appear, Lyapunov
exponent λ1 has nodal value.

Thus in the self-excited Froude pendulum,
where the additional characteristic self-excitation
frequency is present, we have found that the type
of regular motion is controlled by Rayleigh damp-
ing coefficients i.e. for small α̃ coefficients (and for
small external forcing amplitude B̃) the vibration
type of regular motion is favored whilst for larger α̃
the rotation one is preferred.
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