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Starting with an effective hamiltonian describing a disordered substitutional alloy superconductor with local electron pairing, 
we derive a random version of the Gorkov equations in the weak coupling limit. The disorder is treated by means of the coherent 
potential approximation. We take special care of the energy dependence of the order parameter as introduced by averaging. This 
leads to a complex wave function renormalisation parameter Z similar to that found in strong coupling theory. The transition 
temperature Tc is calculated analytically for the lorentzian density of states of the host metal. The numerical calculation of Tc has 
been performed for a range of phenomenologically important parameters such as alloy concentration, relative position of (ran- 
dom) atomic levels, value of on-site effective attraction and carrier density for the densities of states suitable for d= 2 and d= 3 
spatial dimensions and bipartite lattices. 

1. Introduction 

In the BCS theory o f  superconductivity the elec- 
trons are paired in k-space as originally proposed by 
Cooper [ 1 ]. The opposite limit o f  pairing in real 
space has been discussed by Schafroth and others 
even before BCS theory [2].  The material in which 
Schafroth scenario o f  "small"  pairs is realized, is 
sometimes called a local pair (LP)  superconductor.  
The reader is referred to the recent review [ 3 ] for 
discussion of  LP superconductivity-model systems, 
properties and origin o f  strong local attraction lead- 
ing to LPs. For the purpose o f  this work we postulate 
the existence o f  the effective hamiltonian appropri- 
ate for the description o f  a superconductor  with local 
electron pairing. To this end we take the widely used 
negative U Hubbard  model. Such a model has been 
extensively studied [3] both in weak I UI <<t [4] 
and strong [ 5 ] I UI >> t coupling limits. This model 
(or  its generalization including additionally the in- 
tersite Coulomb repulsion) has been used by several 
authors as a model for superconductivity (and 
C D W )  in doped BaBiO3 (BaPb~ _xBixO3, 

Ba~_xKxBiO3) [3 ,6-8]  and in the newly discovered 
superconducting fullerenes MxC6o [ 9 ]. The two-di- 
mensional version o f  the model has also been dis- 
cussed in the context of  the effective description o f  
the superconductivity in C u - O  planes o f  supercon- 
ducting copper oxides [ 10]. Doping of  the materials 
both outside and inside C u - O  planes has an impor- 
tant impact on the superconductivity. Doping out- 
side the CuO plane introduces holes into the plane 
and the materials start to be metallic and supercon- 
ducting. It certainly also introduces disorder to the 
CuO planes in the sense o f  changing local values o f  
of  parameters. The doping in the C u - O  planes in- 
troduces much more disorder. 

It is the purpose of  this work to study the random 
version o f  the negative U-Hubbard model describing 
a substitutionally disordered alloy superconductor. 

The organization of  the paper is as follows. In sec- 
tion 2 we describe the model, and derive the random 
version of  the Gorkov-BCS equations. Section 3 
deals with the averaging. We use the single-site co- 
herent potential approximation CPA approach in its 
analytical version. The metal- insulator  transition as 
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well as the dependence of T~ on various parameters 
of our model will be studied in section 4. In section 
5 we summarize our weak coupling results, discuss 
the previous work in the strong coupling limit and 
the possible extensions of the present model. 

2. The model and equations of superconductivity 

We shall start with the following hamiltonian in 
the tight binding representation [3 ] 

H =  ~ + o + (~, - # ) a i o a i ,  t~ja~,aj, + 
J ~  i a  

- ~ U,n,,  n , .  ( 1 ) 
i 

Here tij is the (nearest-neighbor) hopping integral, 
# is the chemical potential, E °, Ui are random, in 
general, site energy and on-site effective attraction. 
The periodic model is obtained by assuming E,---0 
and Ui= U. The parameter U of the effective instan- 
taneous attraction between electrons of opposite spins 
does not posses any cut-off different from the band- 
width. This means that the description of the ther- 
modynamics of the superconductor with local elec- 
tron pairing requires the knowledge of the relevant 
function, e.g. density of states for all energies and not 
only in the vicinity of the Fermi energy EF 
( E v = # ( T = O  K)) .  

There may be a number of reasons for the fluc- 
tuation of ~o and U~. The most obvious is a substi- 
tutionally disordered At_xBx alloy, where the pa- 
rameters e ° and U i take on values e °,  ~o and UA, Ua 
depend on the kind of atom occupying the site i. The 
corresponding probability distribution for the A~_~Bx 
alloy is assumed to be 

p(y,) = (1 --x) ( 7 , -  YA) +Xt~(y,--~'a), 

~,=~o, U,. (2) 

Model ( 1 ) as it stands may be used in d=  3 as well 
as d = 2  spatial dimensions depending on the ge- 
ometry of the underlying lattice of sites (i, j ) .  Here 
we shall assume the hopping integrals to be periodic 
in the lattice and taking on a nonzero value - t  for 
nearest-neighbor sites. Thus the energy spectrum 

~k = - - t  ~ e ik6 , ( 3 )  

where the sum goes over nearest-neighbors of the 

central site, and the wave vector k will be d= 3 or 
d=  2 dimensional. The rest of the problem is local 
and thus independent of dimensionality. 

The equations of superconductivity will be de- 
rived here by means of the equation of motion for 
the two-time thermodynamic Green's function (GF).  
It is a matrix G,j(og) in the Gorkov-Nambu repre- 
sentation [ 11 ] 

,o,,-[ <<a"la  
'J" " - L ( ( a ;  ~ la:~ >>o~ ( (a~ laj, >>o,_1" (4) 

The equation of motion 

tn(A IB),o = [A, B]n > + (( [A, H]/B~)o, 

= < [ A , B ] ~ > - ( ( A I [ B , H ] ) ~ , o ,  (5) 

applied to Gij(og) and a Hartree-Fock-Bogolubov 
type of factorisation leads to the expression 

ZJi + t~il , ( (J)"~- E~ - kt )g i l -  tu_J G°( m ) 

=logo.  (6) 

where we have defined 

Ai=Ui<ai+air  ) 3 + =  + + , U,.(aitai~ ) , (7) 

e i=E° -U ,<n i>  , (8) 

and 

< n i t ) = < n , >  (9) 

From the spectral representation one finds 

d j=  Ui i d°9ImG]'2(°9+i0) 
- - ~ -  ep, O+ 1 (10) 

- - c o  

In the following we use the notation 

1 
'~-kG}' Gg2J (11) 

and the symmetry properties (for complex to) 

G,~(co) = c;"*~ - - ~ d  ~--(.t)*) , 

G~l (oJ) = G~2*(-o~*). (12) 

The chemical potential # is not a proper thermo- 
dynamical variable in a system with no cut-off in- 
teraction parameters. It has thus to be eliminated in 
favour of the carrier concentration n. The corre- 
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sponding condition for the average number of car- 
ders in the system to be n is defined in terms of the 
averaged Green function G (see eq. ( 19 ) below) and 
reads 

2 f do)ImG11(o)+iO) n = -  - ne [0, 21 . 
n e a~' + 1 ' 

(13) 

Equations (6 ) - ( 10 ) desc r i be  both normal (diago- 
nal terms) and superconducting (off-diagonal terms ) 
properties of the system. For disordered alloys the 
Green's function (1 1 ) is not transitionally invar- 
iant, the Fourier transformation is not allowed and 
in order to get experimentally meaningful results one 
has to average over possible configurations. In a co- 
herent potential approximation [ 1 2 ] this is done by 
requiring vanishing of the average scattering matrix 
for a single impurity embedded in an otherwise av- 
eraged medium. The procedure is described in the 
next section. Let us, however, note that the absence 
of the (already mentioned) energy cut-off for the at- 
tractive interaction makes this approach different 
from the previous calculations for disordered BCS 
superconductors [ 1 3,1 4 ]. 

3. The  configurational averaging 

Let us introduce the averaged GF, to be denoted 
by G. By definition it is periodic, and its Fourier 
transform may be written as 

a(z)= ~:Z (Z~o- ( ~ - u ) ~ - - e ( z ) )  -1 , (14) 

where ,~(z) is a yet undefined (matrix) coherent po- 
tential, and f~ the Pauli matrices. The off-diagonal 
terms of 27 play the role of the order parameter for 
the averaged system. The appearance of a nonzero 
value for a ~2 and G 12 below some characteristic tem- 
perature T¢ marks the onset of superconductivity. The 
CPA for the determination of the 27(z) is the van- 
ishing of the averaged value of the single-site scat- 
tering operator T~ [ 12 ] 

<~,> = ( 1 - x )  TA +X2PB = 0 ,  (15) 

where ~ =  ~ (  1 - G ~ )  and the "scattering" poten- 
tial ~,. is given by 

~,.=[ ¢ , -X, ,  (o~), - A , + Z , 2 ( t n ) ]  (16) 
- a *  +G,  (~o), -¢,+£22(oJ)d" 

Equation (15) is the condition for the determina- 
tion of X(z) which plays here the role of (and is 
sometimes so called) the self-energy in many body 
theories. 

From the configurationally averaged Green's 
function (14) written in the form 

1 
G ( o ~ )  - 

N 

[oJ-£ , l  (oJ) +/z-  e,, Sl2(Co) 1-1 
X~L 27=,(~), ~+Z'==(~)--U+EkJ 

(17) 

and the symmetries (12) we read off the symmetry 
properties of the ~ elements 

2722(oJ) =/:T, ( -  o~*), 

2721 (oo) =ZTE( - o 9 " ) .  (18) 

CPA condition ( 1 5 ) can be shown to be equivalent 
to the condition 

G(¢o) ( 1 --X)GA (¢o) +xGB (o9) , (19) 

where the conditionally averaged GF Gi is defined by 

G,(o~) = G(o~) + G(co) v, (o~)G(co) 

or  

O,(~o) = G -  t (¢_,o) - V, (o~))  - i  ( 2 0 )  

If we define ~'12 as 

2~,2(¢o) = 2oJ Z12(o9) (21) 
2co+27T, (-co*) -2711 (co) 

then from eq. (17) can be found the very important 
exact relation 

612 (¢.0) = --  (611 (0))  --  6T1 ( --  09") )z~12 (09) .  (22) 

Using eqs. (16) and (21 ) we get 

• 1 (a l l (z )  ) 
G'll(z)-- -D~(z~ \ -d ( z )  - e i + X T t ( - z * )  ( 2 3 )  

G~z (z) = -Di(z)l~ (a  12 (z)~k-d(z) Ai Jl-'~12 (z)) , (24) 
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where we have denoted d(z)  =de t  G, Di(z) =de t  G~ 
with respective symmetries 

d ( z ) = d * ( - z * ) ,  O ~ ( z ) = O * ( - z * ) .  (25) 

Hence using symmetries of  eqs. ( 12, 18, 25 ) and the 
relation (22) in the CPA conditions ( 15, 19 ) we get 

(di(G~l (z) - G'7~ ( - z * )  ) ) (26) 
Z,2(z)= Gll(z)-GTl(-z*) ' 

G~z(z) = - G ~ , ( z ) - G ~ t ( - z )  2~12(z) 
2z 

1 (2~(z) - A , ) .  (27) 
Di(z) 

The spectral representation (10) leads to the follow- 
ing exact equation for 2~2: 

/G~,(z) -G~*~(-z*)  U, 
Z'~(z)= - \  G,, (z)-d";, ( -  z*) 

× ~ do~ th (floJ / 2 ) Im(  G'L~°~ ) Z,z ( ~ ) 

1 (,'~,z(aO-Ai))). (28) 
Di( co ) 

From the CPA conditions ( 15 ) or (19) it is easy to 
obtain the second equation for ~: 

( 1 - x )  I?A +X 17", = I~B GIT" A (29) 

We need only an equation for 27~ and it is given by 
the ( 1,1 ) element of matrix equation (29). The  ( 1, 
2) element is explicitly given by eq. (28). Equations 
(10, 13, 28) and (29) form a set (exact in the Har- 
tree-Fock-Bogolubov and CPA schemes) of equa- 
tions for the determination of normal state and su- 
perconducting properties of  the system. In the 
following we describe additional approximations we 
do and the scheme of calculations for both d =  3 and 
d =  2 systems. 

4. Results and discussion 

4.1. Main approximations 

For a given value of the chemical potential the lo- 
cal electron occupancies nA, nB are given by 

7 
nA,s = J PA,B(e)f(E) de,  (30) 

--oo 

where f e e )  is the usual Fermi distribution function 
and PA,B is the local density of states at an A or B site 

pA,B(e) = -- 2 ImgA,B(e+i0) • (31) 

The averaged site occupation n and density of  states 
p(e)  can be expressed as 

n= (n i )  = ( 1 --X)ng +xnB, 

p (e )=(p~(¢ ) )=(1 - -x )pA(e )+xpB(e ) .  (32) 

It is obvious that the parameter n calculated in an 
alloy has to be equal to the density of free carriers in 
the system. This in turn depends on the chemical na- 
ture of the constituents forming an alloy. Let denote 
by n °, n ° the number of valence electrons per atom 
in the system composed of only atoms of type A or 
B. In an Al_xBx alloy the concentration n is 

n= ( 1 - x ) n ° + x n  ° .  

n °, n ° are material parameters like e °, ¢o. In this 
work we take n ° =0,  n ° =2,  similarly as in refs. [7] 
and [8]. 

Equation (32) for n together with eqs. (30) and 
(31 ) reduces to the condition (13) for the deter- 
mination of/t.  The diagonal part of the self-energy 
X~l(Z) can be, in the first approximation, calculated 
by neglecting the effect of superconductivity on it (i.e. 
the terms proportional to Sl2(Z)).  Thus it is given 
by the solution of 

Zll (z) = ( 1 --X)eA +XeB 

--  ( e A --Sll ( Z ) ) a l l  (Z)  (~B - - ~ l l  ( Z ) )  . 

(33) 

This approximation is certainly valid for the calcu- 
lation of Tc where both 2712 and G12 are small com- 
pared to 27~1 and G~l. In the spirit of the weak cou- 
pling we neglect the last term on the rhs of eq. (27) 
for 2~12. It takes thus the form 

/G~(z ) -G~*~( - z* )  
Zl~(z) I 

-\dll(z)-GT, e-z*) 
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× Ui f do9 t h ( ~ )  I m ( ~  2~'12 (o9)) /"  n 

(34) 

Let us note that our treatment of disorder leads to a 
frequency dependent order parameter. This result has 
been previously derived in the context of BCS [ 13 ] 
and Eliashberg [ 14 ] theories of superconductivity in 
disordered alloys. In this work we study the super- 
conducting transition temperature so we need only 
the linearized order parameter equation. This means 
that the Green's functions entering eq. (34) are to 
be calculated for Zl2 = 0: 

611 (Z) 
G~,(z) = 1--(Ei--S,~(Z))(Tll(Z) (35) 

and 

po(e) (36) Gll(z)= d e z _ £ , l l ( z ) _  e,  

Po (~) is the host metal density of states. Here we col- 
lect the analytical expressions for the Green's func- 
tions for three different po functions. 
( 1 ) For the ellipsoidal density of states we have 

p ° (E )=  2--~-- wEx/~-EZ O ( w 2 - E  2) (37) 
~ W  2 

Here w is a half-width of the band; O(x) = 1 for x>  0 
and for x<0.  Integral (36) can easily be evaluated 
and we find 

Gll (Z)= ~ (z+ l~-Z,t ( z) 

--x/(z+l~--,S,l,(z))2+w2). (38) 

The conditionally averaged function (35) takes the 
following simple form 

1 
G~ (z) = _E~ + Z+ #_GI~(Z)W2/4 . (39) 

The self-energy 2711 (Z) is determined by the cubic 
equation and can in principle be also calculated 
analytically. 
(2) The lorentzian DOS obeys 

1 w 
/ 9 0 ( E )  ~--- n ~2"1 ' -W2 " (40) 

Simple integrations lead to 

Gt~(z)=(z-Zqt(z)+i t+iwsgnlmz)  -l , (41) 

G]l(z) = (z-e i+lz+iwsgnlmz)  -1 . (42) 

CPA condition (19) can now be used to find the 
expression for 27~1. For the A~_xBx alloy it reads 

x ( 1 - x ) ( ~ - ~ A )  2 
+ (43) 

z+ #+iw sgn Im z-xeA - ( 1 -x)~B " 

(3) Concerning the DOS of the square lattice we 
make the following remarks. 

The above two forms of the DOS have been widely 
used to simulate the DOS of the three-dimensional 
lattice. In view of the quasi-two-dimensional char- 
acter of copper oxide superconductors and of several 
organic superconductors it may be instructive to 
study the density of states of a two-dimensional lat- 
tice. For free particles the DOS is known to be con- 
stant in 2 dimensions. On the contrary, it possesses 
a characteristic logarithmic singularity for the square 
lattice. With the help of eq. (3) the following exact 
representation of the DOS for the square lattice can 
be obtained 

po(~) = N  -1 ~, 8(e+2t(coskxa+coskya)). (44) 

The alloy Green's function is expressed in terms of 
the elliptic integral K(k) [15 ] as 

a l l ( z ) =  ~ K ( k ) ,  

k= (z--~ ~./-~11 ( z ) ) /2 t .  (45) 

The half-band-width is given now by w= 4t. 

4.2. Analytical results for Tc 

4.2. I. Solution for BCS model 
The characteristic feature of the BCS model is the 

existence of the energy cut-off o90 << #, w. In such a 
situation it is enough to evaluate the (in the interval 
of 2o90 around the Fermi level slowly varying) 
Green's functions in eq. (34) at the Fermi energy 
og=z=iO. One gets 

Tc = 1.13o9o e -~/a~ (46) 
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with the effective attraction parameter &= 
(U,pa(O)/p(O)). Here pi(O) and p(O) denote the 
average and conditionally averaged alloy densities of 
states at the Fermi energy given by the imaginary 
parts of the Green’s functions (35) and ( 36), re- 
spectively. The general form (46) does not depend 
on the density of states. For the lorentzian DOS we 

get an expression previously given by Weinkauf and 
Zittartz [ 13 ] 

&ff= 
W 

w*+xc; + (1 -x)& 

I t;+w2 ci+w2 
x tl-x)uA~+xuB~ 

A B 1 . (47) 

4.2.2. The model with short range nonretarded 
attraction 

In our model with local pairing the interaction has 

no cut-off and the neglect of the energy dependence 
of the Green’s functions is not legitimate. Calcula- 
tion of T, from eq. (34) is possible but very tedious 
because of the w and z dependence of the order pa- 
rameter C, 2. We shall therefore neglect the frequency 
dependence of it, which is equivalent to the facto- 
risation of the average in eq. (34) by using 

> . 

cl 

(48) 

Then equation (34) takes on the simpler form 

&z(w)= 

-(zj dwth($)Im(%$$&(w))), (49) 

which is equivalent to the result presented previ- 

ously [ 7,8 1. 
We use eq. (41)) evaluate integrals by means of 

contour integration and get the following exact con- 
dition for TC: 

(2n+l)xkT,+w 
[(2n+1)nkTC+w12+(ti-p)’ ’ 

(50) 

This can be summed and expressed in terms of the 
di-gamma functions Y of complex argument [ 161 as 

l=(!${Re[---& Y(i + $ +i&)] 

- Y& Y(;>}>. (51) 

Notingthat Y(f)=-y-21n2,whereyg00.577isthe 
Euler constant, and that asymptotically the function 
Y(z) E In(z), we get an approximate expression for 
Tc: 

T,= F Wefle-‘lLfi, (52) 

with effective attraction Aerr= (pO( e,) U,) and effec- 
tive band width 

- zarctg: I) I f . (53) 
en- 

Here, as usual (0,) = (1 -x)OA+XOB; Po(ei) is 
given by eq. (40) and for simplicity we have de- 
noted ti- p by e,. The concentration dependence of 
T, is contained in et. At Fermi energy ei=O and the 
argument of p0 is zero. For a pure system with 
eA=+,=O, UA=Ug=U,&=~~(p)Uandwerecover 
the usual BCS-type solution with n dependent “cut- 
off” W,, and &. In the clean limit, for the loren- 
tzian density of states and at zero temperature eq. 
( 13) can be evaluated exactly and one gets 

n-l= iarctg:. 

In the n+O limit we find from eqs. (52) and (53) 
the n dependence of T, in the form 

T,a iexp(- q)exp(- A). 

Calculation of the zero temperature gap parameter 
z,, would be much more involved for an alloy be- 
cause the order parameter Cl2 does depend on fre- 
quency w through the renormalisation function Z( w ) 
even when z’,, is constant. Z(w) is defined by eq. 
(2 1); explicitly 

Z(w) = 
2w 

2w+c:,(-w*)-c,,(w)~ 
(54) 
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Z(o9) is known to play an important role in the 
strong-coupling theory [ 1 1,1 7 ]. Here it results in the 
process of  averaging. In the CPA we replace the real 
disordered system by the effective one described by 
the complex effective hamiltonian (here complex 
self-energies 271, (o9) and 27,2(o9) ). The imaginary 
part of  the self-energies has the interpretation of in- 
verse lifetime of the particles. This introduces dy- 
namical (og-dependence) features into the problem 
which should affect the electromagnetic properties 
of  the superconductors. 

For the lorentzian DOS the function Z(og) can be 
easily calculated. In fig. 1 we have shown plots of  real 
and imaginary parts of Z(og) for the present model 
and also for a square-lattice DOS. We can see the 
strong frequency dependence of both real (solid 
curves) and imaginary (broken curves) parts of 
A(og) around the Fermi energy (zero of energy in 
these figures). 

1"5iRe Z 

0.5 / 

i 

-0.5 

(¢) 
-1.5 

-d.O 

L / 
i j  

i 
0 .0  ~ / w  4.0 

t.5 

z(~) 

0 .5  

-0.5 

-1.5 

I m  Z__ _ - . ~]1 . . . . . . .  

(b) 

- 4 . 0  0 .0  ~ /7¢  4 .0  

Fig. 1. The wave function renormalisation parameter Z(to) (eq. 
52) as a function of frequency for lorentizian host metal density 
of states (a) and square lattice DOS defined in eq. (43) (b). 
Note the strong frequency dependence of Z(to) in the large part 
of the band. The alloy parameters are x=0.5, ~o=0.45w, 
U=0.225w for both (a) and (b). 

4.3. Numerical  results and discussion 

For numerical purposes we measure all energies 
and temperatures in units of the half band width w. 
An important parameter characterising the scatter- 
ing properties of an alloy is the difference between 

~ 0 ~ C A  - - C  B . unrenormalised energy levels o o 

4.3.1. The metal- insulator transition 
The (attractive) interaction between electrons 

leads to the formation of Cooper pairs but also to the 
renormalisation of the single particle energies via the 
Hartree term (8). This is an important factor lead- 
ing to the appearance of the metal-insulator ( M - I )  
transition when we vary the interaction parameters 
Ui, i=A,  B. (when UA= UB then the common value 
is denoted by U). We detect the M - I  transition by 
observing the appearance of the gap in a single par- 
ticle density of states p ( E )  at the Fermi energy 
E = Ev. To calculate p (E) from the imaginary part of  
the Green's function we have solved the system of 
eqs. (33) and (36) with corresponding host metal 
density of states po(E) ,  see eq. (37) or (44), and 
taking into account the renormalisation of the 
"atomic" levels E, and eB as expressed by eqs. (8), 
(30), (31) and (35). In figs. 2(a)  and (b) we il- 
lustrate the renormalisation by plotting the differ- 
ence ~= c , - c B  as a function of concentration x for 
various values of the bare difference ~o = c ° - ~o. The 
effect is weak for small values of Oo and U (fig. 2(a)  ) 
increasing with the increase of both parameters. Note 
the difference between curves corresponding to pos- 
itive and negative values of ~o which has an impor- 
tant influence on the metal-insulator ( M - I )  phase 
diagram. The phase diagram is shown in fig. 2(c) in 
the (~o, x) plane for U=0.4w. The metallic phase 
exists between the curves shown. Below the bottom 
curve and above the upper one the system is insu- 
lating. For a specific alloy (given value of ~o) the 
model shows two transitions from insulator to metal, 
at low x and M-I  at high x for positive ~o and even 
more consecutive transitions for negative ¢~o. Similar 
calculations have been presented in refs. [ 7 ] and [ 8 ], 
but the analysis of the M- I  transition in ref. [ 7 ] was 
limited to positive ~o. In ref. [ 8] the phase diagram 
is shown on the (6, x) plane. The phase diagram in 
our model does not depend on the form of the den- 
sity of states. 
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Fig. 2. The renormalised scattering potential parameter 5 as a 
function of concentration x for a number of bare values 5o and 
U=0.2w (a), and U=0.4w (b). Figure (c) shows the regions of 
metallic and insulating phases on the 50, x plane for U=0.4w. 
Note the difference between 50 > 0 and 5o < 0 cases, connected with 
the Hartree term in eq. (8). These results do not depend on the 
density of states used. 

Some addit ional  insight into the system properties 
can be obtained by looking at the values of the DOS 
at the Fermi energy for different concentrat ions x. 
These are shown in fig. 3 (a )  for a semielliptic host 
metal DOS and in fig. 3 (b)  for a square lattice DOS 
for two values 6o=0.6w and - 0 . 6 w  and U=0.4w.  
The difference between positive and negative values 

p(Fs)" 
0.6 

0.4 

0.2 

OOo.' o 

6 o = - 0 . 6 W  

0.5 x 1.0 

p(Es)x ~r 
0.6 

0.4 

0.2 

O.Oo.' o 0)5 x 1.0 

Fig. 3. The density of states at the Fermi energy plotted as a func- 
tion of alloy composition for U=0.4w and two values 5o=0.6w 
and -0.6w, and a three-dimensional system with semielliptic 
DOS (a) and two-dimensional square lattice DOS (b). The value 
ofp(Ez) does not depend the sign of So for x=0.5 for symmetry 
reasons. The difference between p(EF) for 50>0 and 50<0 is 
mainly responsible for the differences noted in fig. 2. 

of  60 is connected with renormalisat ion of single par- 
ticle energies by the Har t ree-Fock term (-7,-(ni) in 
eq. (8) .  These in turn are responsible for the asym- 
metries in the phase diagram. 

4.3.2. Superconduct ing  critical t emperature  
In fig. 4 we show the dependence of the supercon- 

ducting transi t ion temperature on the concentrat ion 
x for various strengths of the interaction parameter 
U / w = 0 . 3 ;  0.4; 0.5 for an alloy with 6o=0.6w (fig. 
4 (a )  ) and 0o= - 0 . 6 w  (fig. 4 (b )  ). Note that Tc first 
increases (fig. 4 ( a ) )  with increasing U (U=0.3w,  
U =  0.4w) and than decreases for U =  0.5 w and larger 
values for 60> 0 but  it increases monotonical ly (ex- 
cept for x =  0.5) in the same range of attraction U for 
60<0. Tc has a max imum for half  filled band  (re- 
member  n = 2x in our model)  when 60 > 0 and it pos- 
sesses a deep m i n i m u m  at x =  0.5 for 60 < 0. This can 
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Fig. 4. The superconducting transition temperature as a function 
of alloy concentration (or carrier density n = 2x) for a three-di- 
mensional system, with various strengths of the on-site attraction 
Uas indicated and ~o=0.6w (a), and ~o= -0.6w (b). 

be s imply explained by the behav iour  o f  the densi ty 
o f  states at the Fe rmi  energy. Al though our  model  
does not  imply  any energy cut-off  as in BCS theory, 
the structure o feq .  (34)  makes  impl ic i t  that  the den- 
sity of  states at EF is the leading factor quant i fying 
To. Figure 5 shows analogous results for a two-di-  
mensional  system. The overal l  behav iour  is similar.  
The maximal  value o f  the t rans i t ion  tempera ture  is 
somewhat higher and the slopes of  the curves for x--, 0 
or  1 are different  f rom the three-d imensional  case. 

In fig. 6 we show the plot  o f  T¢(x, ~o) for the 
AI_xB~ alloy with different  in teract ion parameters  
UA=0.5W and UB=0.2w. For  negative J0 the T¢ takes 
on appreciable  values for x <  0.5. It follows from this 
figure that  the funct ional  dependence  o f  T~ on the 
cart ier  concentrat ion (n = 2x)  depends  quite strongly 
on the alloy under  considera t ion  (~o, U~). 

Similar  quest ions have been addressed previously 
[6,8] .  Our  condi t ion  (34)  for the gap pa ramete r  
2712(z) reduces to that  presented  in the ci ted works 
after addi t iona l  factor isa t ion o f  averages as ex- 

O. 04 / I  I I  
rc /w / / ~ 1  

0.0£ / ~  

°°°o ~/~ '~/~o 5 :~ 1.o 

Fig. 5. Tc vs. n for a two-dimensional alloy with ~o = -0.6w and 
for a few values of U/w as indicated. Note the slight increase of 
the maximal value of T¢ and differences on the slopes of curves 
for x--,0 and x--, 1 in comparison to the three-dimensional case. 

°/ 

Fig. 6. Concentration dependence of Tc for a number oft~ o values 
of the three-dimensional alloy with UA = 0.5 w and Ua = 0.2 w. The 
different values of U for the A and B components break the par- 
ticle-hole symmetry and makes To(x)~ To( l -x)  even in the 
system with no single particle scattering (Jo = 0). 

pressed in eq. (48) .  Such an approx imat ion  makes 
the gap paramete r  frequency independent  and  
changes the dependence  of  Tc on x or  n and U. 

5. Final remarks 

In the present  work we have considered the weak 
coupling l imit  of  the model  ( 1 ) (i.e. I UI < 2zt). In 
the opposi te  large I UI l imit  ( I UI >> t; p re formed lo- 
cal pai r  regime)  the model  (1)  can be reduced to 
that  o f  the hard  core charged Bose gas on a latt ice in 
r andom chemical  potent ia l  (see eq. (5)  in ref. [ 5 ] ). 
It  is clear that  as far as superconduct iv i ty  is con- 
cerned the problem is equivalent  to the di r ty  boson 
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problem whereas for the charge density wave ( C D W )  
the problem is equivalent  to that  o fan t i fe r romagne ts  
in r andom magnet ic  field. The effects of  d isorder  on 
the stabil i ty of  singlet superconduct iv i ty  (SS)  phase 
and the crit ical t empera ture  in this case have been 
considered for two types o f  r andom site energy 
dis t r ibut ion:  
( 1 ) the two delta d is t r ibut ion  with energies centered 
at +Eo  and 
(2)  the square d is t r ibut ion  of  width Eo. 
For  the case ( 1 ) and  n = 1 increasing d isorder  sup- 
presses SS i f  2Eo/Jo > 1, where Jo=z  2t2/IUI and z 
is the coord ina t ion  number .  An analysis o f  SS and 
C D W  orderings also shows that  increasing d isorder  
stronger suppresses C D W  than SS and that  there ex- 
ists a possibi l i ty  of  d isorder  induced superconduc-  
tivity. It would be of  interest  to extend the analysis 
of  the present  paper  to include the intersi te  Coulomb 
interact ion to study the C D W  order ing and mutua l  
compet i t ion  of  C D W  and SS. We should also stress 
that  such an extension is necessary as far as a com- 
par ison with exper iments  on doped  BaBiO3 is 
concerned.  

Here we have concentra ted  on the calculat ion o f  
T~ of  an superconduct ing alloy descr ibed by a neg- 
ative U Hubba rd  model  by treat ing at t ract ive inter- 
act ions in the broken symmet ry  H a r t r e e - F o c k  ap- 
p rox imat ion  and d isorder  in CPA. The model  
describes the me ta l - in su la to r  t rans i t ion  for high 
enough values of  the in teract ion pa ramete r  U. When  
supplemented  with the above ment ioned  intersi te in- 
teract ion it should describe the superconduct ing 
propert ies of  BaPbl_xBixO3 and possibly some o f  the 
h igh- temperature  superconduct ing oxides with dis- 
order  in t roduced into the CuO planes. 

The frequency dependence  o f  the gap pa ramete r  is 
expected to play an impor tan t  role in unders tanding  
electromagnet ic  proper t ies  of  a superconduct iv i ty  as 
e.g. the var ious  features " ins ide"  the gap in tunnel-  
ing spectra. This  p roblem is under  investigation.  
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