
Chapter 6

Dynamical response of a Van der Pol
system with an external harmonic
excitation and fractional derivative

Arkadiusz Syta and Grzegorz Litak

Abstract We examined the Van der Pol system with external forcing and
a memory possessing fractional damping term. Calculating the basins of at-
traction we showed broad spectrum of non-linear behaviour connected with
sensitivity to the initial conditions. To quantify dynamical response of the
system we propose the statistical 0-1 test. The results have been confirmed
by bifurcation diagrams, phase portraits and Poincare sections.

6.1 Introduction

The system with fractional damping dependent on the velocity history have
focused a lot of interest and were extensively studied in the last decade
[1, 2, 3, 4, 6, 5]. To model complex energy dissipation with minimum num-
ber of parameters in presence of hysteresis and memory effect, the fractional
order derivative in the damping term is proposed. In such systems the damp-
ing force is proportional to a fractional derivative of the displacement instead
of the classical case (first order derivative of the displacement). The mem-
ory of the system was noted to be important factor in different areas [5, 6].
Van der Pol systems, describing relaxation-oscillations are characterized by
a non-viscous composite damping term [7, 8] which is small value, negative
for small amplitude oscillations and changes the sing to positive for increas-
ing amplitude. This system property is reflected by dynamical response of
limit cycle [9]. Comparing to viscous nonlinear systems this implies type of
bifurcations and transition to chaos including hop bifurcations [10, 11].

Recently, Van del Pol systems have been studies in a series of papers
[12, 13, 14, 15]. Pinto and Machado proposed the complex order van der Pol
oscillator [12] reporting the changes in the system response spectrum with
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varying the fractional order of derivative in the damping term. Attari at al.
[13] focused on periodic solutions and studied system parameters for their
stability. Suchorsky and Rand [14] investigated the synchroninization by a
fractional coupling of two Van del Pol systems. Finally, Chen and Chen [15]
studied a fractionally damped van der Pol equation with harmonic exter-
nal forcing. They focus on the effect of fractional damping influence on the
dynamic quasi-periodic, and chaotic responses. In particular, the transition
from quasi-periodic to chaotic motion was demonstrated.

In the present paper we continue the analysis of chaotic motion proposing
an efficient method for chaotic solution identification by means of the 0-1 test
[18, 19]. The main idea of this method is to use the statistical asymptotics
which can distinguish the periodic and non-periodic response by studying a
single coordinate of system response.

6.2 Van Der Pol system with a fractional damping

The van Der Pol system with external excitation is described by equation:

d2x

dt2
+ ǫ(x2 − 1)

dqx

dtq
+ x = f cos (ωt), (6.1)

where the fractional order derivative can be described using the Grünwald -
Letnikov definition [16, 17]:

dqx

dtq
≡a Dq

t x(t) = lim
h→∞

1

hq
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h ]
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(−1)j
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)

x(t − jh), (6.2)

where binomial coefficients can be extended to complex numbers by Euler
Gamma function

(

q

j

)

=
q!

j!(q − j)!
=

Γ (q + 1)

Γ (j + 1)Γ (q − j + 1)
, (6.3)

here a pair of square brackets [.] appearing in the upper limit of the sum
denotes the integer part, while a the length of the memory, respectively.

Note that Eq. (6.1) can be decomposed into set of equations of lower
degree:

LD1

t x(t) = y(t)

LDq
t x(t) = w(t)

LD1

t y(t) = −x(t) − ǫ(x2(t) − 1)w(t) + f cos (ωt),
(6.4)

where w is defined as a fractional time derivative of displacement, while y
coincides with velocity (y = ẋ).
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6.3 Test 0-1

To quantify obtained results which can be expressed in the time series of
each coordinate we use the 0-1 test for chaos detection ([18, 19, 20, 23, 24]).
This test combines both spectral and statistical properties of the system and
can distinguish different types of dynamic of the system by value K ∈ {0, 1}.
Below, one can find description of the method.

First of all, we change the coordinates from (x, ẋ) to the new set (p, q)
defined as follows

p(n) =

n
∑

j=1

x̃j cos (jc), q(n) =

n
∑

j=1

x̃j sin (jc), (6.5)

where x̃ = [x̃1, x̃2, x̃3, ...] is a time series sampled from the original simu-
lated series x using and one forth of excitation period [25]. The time interval
T/4 (T = 2π/ω) corresponds to the nodal autocorrelation function of excita-
tion harmonic term δcos(ωt). Note that, relevant sampling can make shorter
the length of time series used in calculations leading consequently to reduc-
tion of computation time. Finally, c is a constant, c ∈ (0, π). One can see
that Eq. (6.5) resembles the Fourier transform for chosen frequency (in the
limit of larger n).

In the next step, one computes the mean square displacement (MSD) of
p and q:

MSD(c, j) =
1

n − j

n−j
∑

i=1

{

[p(i + j) − p(i)]2

+[q(i + j) − q(i)]2
}

, (6.6)

where 0 ≪ j ≪ n (in practice n/100 ≤ j ≤ n/10). The main criterion which
is based on the trends of MSD(c, j) in higher j limit. It is bounded for regular
dynamics or unbounded for chaotic dynamics[18, 19, 20, 24, 21, 22]

The final quantity K is calculated as a asymptotic growth rate of MSD
(here given by the correlation method):

K(c) =
Cov[j,MSD(c, j)]

√

Cov[j, j] · Cov[MSD(c, j),MSD(c, j)]
,

(6.7)

where j is based on series of natural numbers: j = n/100, n/100 + 1..., n/10,
and Cov[x1,x2] denotes corresponding covariance of two series which for the
same arguments x1 = x2 means variance while for chosen pair of two different
series: x1 = j and x2 = MSD(c, j), it can be expressed in terms of the
expectation value E[.]:
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Cov[j,MSD(c, j)] = (6.8)

E[[j − E[j]] · [MSD(c, j) − E[MSD(c, j)]]].

6.4 Simulation results

In our investigations we set ǫ = 8.0, f = 1.0, ω = 3/10, and (x, ẋ) = (0.5, 0.0)
for various q values (q ∈ [0.8, 1.2]).
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Fig. 6.1 The red points indicate the bifurcation (stroboscopic) diagram of the x coordinate

versus order of the derivative q ∈ [0.8, 1.2], initial conditions for each q were (x, ẋ) =
(0.5, 0.0). Other system parameters: ǫ = 8.0, f = 1.0, ω = 3/10. The full black line
corresponds to parameter K defined for the 0-1 test versus q. Note, different q-parameter
regions. K ≈ 0 correspond to regular (periodic motion) while K ≈ 1 to chaotic solution.

The parameters used for K estimation were as follows: n = 400 , j = 4, .., 40.

Figure 6.1 shows the results of the bifurcation diagram of the x coordinate
s (red points) versus order of the derivative q. The characteristic broad distri-
butions of points imply the chaotic bechaviour while the countable few points
(1 to 3 points per q value noticeable in Fig. 6.1) corresponds to a periodic
solution.

On the other hand the full black line corresponds to parameter K defined
for the 0-1 test versus q. Note, different q-parameter regions. K ≈ 0 corre-
spond to regular (periodic motion) while K ≈ 1 to chaotic solutions. Note
that the K ≈ 0 regions ideally match the broad distributions in bifurcation
diagram. One can also notice some intermediate value of K (for q = 1.05)
which could tell that reaching the asymptotic limit of K needs longer time
series of x̃.
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Fig. 6.2 Phase portraits and Poincare points for q =0.9 (a), q =1.0 (b), and q =1.063 (c),
respectively. All other system parameters as in Fig. 6.1. The corresponding results for K:

0.91, −0.02, 0.06

For better clarity we show the phase portraits with corresponding Poincare
sections in Figs. 6.2a-c. The results also confirm the 0-1 test analysis (see Fig.
6.1).

6.5 Conclusions

We have examined dynamics of the Duffing model with fractional damping
term. Using nonlinear methods (phase diagrams, Poincare sections and bifur-
cation diagrams) we have showed significant different system response while
varying the order of the derivative (from non integer to integer). We also
quantified the type of motion by 0-1 test which is based on statistical proper-
ties of phase coordinate. Note that the Lyapunov exponent could be difficult
to estimate as the phase space dimension is undetermined due to the memory
effect. In such a situation the embedding dimension should be estimated for
each q value [26].
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