
Chapter 15

Basins of attraction in a simple
harvesting system with a stopper

Marek Borowiec, Grzegorz Litak, Stefano Lenci

Abstract We examine the dynamical response and the power output of a vi-
bration energy harvesting electro-mechanical system with kinematic ambient
excitation and impact. Due to the stopper non-linearities the examined sys-
tem exhibits multiple solutions. We characterize their properties and stability
by the voltage output and corresponding basins of attraction.

15.1 Introduction

Many mechanical systems, with non-linearities show complex responses char-
acterized by multiple solutions with different amplitudes of vibrations and
specific basins of attraction. Their existence make unrivalled opportunity to
improve the effectiveness of kinetic energy harvester through so called broad-
band frequency effect [1, 2, 3, 4]. Corresponding energy harvesting devices
are equipment by mechanical resonators and appropriate energy transducers,
transforming ambient mechanical energy into electric form.

Recently, the concept kinetic energy harvester model based on mechanical
resonator and electromagnetic transducers [5, 6, 7] was explored extensively.
This work were continued by Blystad and Halvorsen [8]. The electrostatic de-
vices of micro-electromechanical systems (MEMS) were proposed and studied
by Gu [9] and Le et al. [10, 11].
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In the present chapter we continue study on the non-linear impacting
electro-magnetic harvesters with stoppers, derived from the idea of Soliman et
al. [12, 13]. For the present system, at least two different solutions appear due
to applied a stopper of the moving structure, if the amplitude of mechanical
resonator is large enough. The impacting to the stopper both limits vertical
displacements and simultaneously changes the elastic characteristics of the
system.

15.2 The model

The model of energy harvester is made up of a main body frame, which
consists both the electrical harvester and the internal mechanical system (see
Fig. 15.1a). The subsystem within the frame includes the effective magnet
mass m which adopts the frame vibrations through the springs and dampers.
The frame system is vertically moving due to a ground harmonic excitation
y = A cos(ωet). The mounted transducer on the frame, harvests the kinetic
energy, converting into electric one. This energy transformation causes the
electric damper be via relative velocity of the vibrating effective mass as a
magnet, and the coil located appropriately on the frame.
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Fig. 15.1 Schematics of the mechanical resonator of energy harvesting system (a). The
additional electrical circuit is powered by Faraday electromotive force via the moving coil
across the magnetic field. In the calculations we neglect self-induction of the coil Lc. The
stiffness characteristics of the effective model (b).

When a distance zd is covered by mass m and hits onto a spring k2 occurs,
the spring stiffness k is changing as shown in Fig. 15.1b. Due to impacts
both the stiffness k and the mechanical damping bm take two differently
values (i = 1 and i = 2), from k1 and bm1 when impacts does not take place,
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to k2 and bm2, while contacting. And then the mechanical restoring force Fr

is simultaneously modifying according to the Eq. 15.1:

Fr =

{

k1z for z < zd (i = 1)
k2z + (k1 − k2)zd for z ≥ zd (i = 2)

(15.1)

as well the damping restoring force Fd:

Fd =

{

b1ż, for z < zd (i = 1)
b2ż, for z ≥ zd (i = 2)

(15.2)

Equation of motion of the system reads

mz̈ + biż + kiz = −mÿ + (k2 − k1)zdΘ(z − zd). (15.3)

Finally, voltage induced across the load resistor R can be estimated as

U =
RBℓ

R + Rc

ż. (15.4)

where R, Rc denote corresponding the load and the coils resistances, B is the
magnetic induction and ℓ is the coil effective length.

Using the dimensionless variables:

τ = ω1t, Ω =
ωe

ω1

, Z =
z

zd

, Y =
y

zd

, (15.5)

where the natural frequency used for introducing dimensionless time τ is
ω1 =

√

k1/m.
The equation of motion in dimensionless form becomes:

Z̈ + 2ηiŻ + r2

i
Z = −Ÿ + (ρ2 − 1)Θ(Z − 1) (15.6)

The function Θ(Z−1) is the Heaviside function, switching the system whether
the mass m is in contact with the spring of stiffness k2 or not.

The parameters r and η depend on conditions of Eqs. 15.1, 15.2 and for
two cases (i = 1, 2), ri =

√

ki/k1 and ηi = (be + bmi)/(2
√

k1m) (see Table
15.1).

{

r1 = 1, and η1 = 0.0074, for z < zd (i = 1)

r2 = ρ =
√

20 and η2 = 0.45, for z ≥ zd (i = 2)
(15.7)

The excitation frequency range used in simulation: fe = ωe

2π
= (90−110)Hz

for crossing the resonant area, which was found at fe = fn = ω1

2π
= 94.8Hz

[13] (fn – natural frequency), (see Figs. 15.2).
The others parameters used in simulations are listed in table 15.1:
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Table 15.1 System parameters

Symbol and value Description

m = 0.0038kg the effective mass of the magnet
k1 = 1348N/m the stiffness of the upper spring 1

k2 = 26960N/m the stiffness of the lower spring 2

bm1 = 0.0175Ns/m the mechanical damping coefficient of the upper damper 1

bm2 = 2.0208Ns/m the mechanical damping coefficient of the lower damper 2

B = 0.57T the magnetic induction
ℓ = 0.44m the effective length of an electric coil

R = 2.7Ω the load resistance

Rc = 1.2Ω the internal resistance of an electric coil

be =
(Bℓ)2

R+Rc
the electric damping coefficient

ηi = be+bmi

2
√

k1m
the dimensionless damping coefficient of the system

15.3 The results of simulations

The essence of our non-linear systems is the appearance two solutions.
In Fig. 15.2 a we show the resonance curve of the voltage output U ver-
sus excitation frequency. Note that the black one shows the results for the
system without a stopper impacts at an enough large gap distance zd. Af-
ter shifting the gap to an appropriate smaller value, the stopper hits and
the situation changes drastically. First of all the resonance region amplitude
is limited to some value, but on the left hand side of the black curve we
observe a substantial increase of the voltage output due to continuation of
the impacting solutions (red curve) with increasing the excitation frequency.
Simultaneously the second non-impacting solutions appear (blue curve and
points) in the same region of frequency competing with the impacting one.
This solution coincide with the black curve solution without a stopper. In
Fig. 15.2b we show additionally a stroboscopic bifurcation diagram versus
excitation frequency. It is possible to see that the impacting solution disap-
pears entirely at the frequency fe at about 106 Hz. Finally in Fig. 15.3a and b
we show the corresponding time series and phase portraits for impacting and
non-impacting solutions for chosen frequency at fe = 100Hz, which depend
on initial conditions. It confirms that for different initial conditions the me-
chanical resonator vibrates at different amplitudes and velocities respectively
and so it leads to the larger or smaller voltage output. For distinguishing the
different behaviour of the system in the case presented in Figs. 15.3, the di-
mensionless initial conditions (Z(τ = 0), Ż(τ = 0)) = (z0, ż0) ware chosen in
accordance to Fig. 15.4f as z0 = 0, ż0 = 0 (no impacts) and z0 = 1, ż0 = 0
(with impacts).

In the context of two competing solutions a new question arises. What are
the basins of attraction of corresponding solutions and how they evolve with



15 Basins of attraction in a simple harvesting system 5

(a)
90 95 100 105 110
0

10

20

30

40

50

−−>

<−−

Excitation frequency [Hz]

R
M

S
 V

ol
ta

ge
 [V

]

 

 
up−sweep
down−sweep
no stopper

(b)
90 95 100 105 110

−0.2

−0.1

0

0.1

0.2

Excitation frequency [Hz]

R
es

po
ns

e 
am

pl
itu

de
 z

[m
]

Fig. 15.2 RMS of voltage output versus frequency (a), blue colour denotes the solution

with impacts for fe = (92.6 − 97.1)Hz (swept by quasi-static decreasing of frequency)
while red one corresponds to the impacting solution for fe = (92.6− 106.1)Hz (swept with
increasing frequency), additionally black curve illustrates the solution without stopper.

Bifurcation diagram (b).
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Fig. 15.3 Time series (a) and corresponding phase portraits with Poincare points (b) for
two solutions. Blue colour denotes the solution without impacts while red one corresponds
to the impacting solution.

increasing frequency. The answer to these questions clarifying the dynamics
of two solutions is focussing the next part of our discussion.

For better clarity, the simulations were done for a number of initial con-
ditions (Fig. 15.4) across the increasing frequency. Obviously the impacting
solution basin (red colour) is fairly reduces by increasing excitation frequency
and about fe = 106 Hz it almost disappears. To follow the quantitative
changes of basin size we defined by the size of the attractor as a correspond-
ing fracture of an impacting solution basin to the whole rectangular surfaces
(Fig. 15.4). These results are plotted in Fig. 15.5. Note, Figs. 15.4 and 15.5
show erosion in the basin of attraction with increasing frequency. One can
clearly observe in Fig. 15.5, the erosion spreads increasingly out from the im-
pacting solutions which are independent on initial conditions at fe about 97
Hz (red background in Fig. 15.4a) to the solutions nearly without impacting
(white background in Fig. 15.4i). This results provide detection of different
behaviours due to double solutions phenomenon.
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Fig. 15.4 Basins of attraction for impacting solution for increasing frequency: (a) fe = 97
Hz, (b) fe = 97.2 Hz, (c) fe = 97.4 Hz, (d) fe = 98 Hz, (e) fe = 99 Hz, (f) fe = 100 Hz, (g)
fe = 102 Hz, (h) fe = 105 Hz, (i) fe = 106 Hz. Note that in this figure, the dimensionless
variables were used. Following Eq. 15.5 (Z(τ = 0), Ż(τ = 0)) = (z0, ż0).
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Fig. 15.5 Fraction of the impacting solution (basin of attraction) versus frequency.

15.4 Conclusions

In summary we note that the non-linear characteristics of the mechanical
resonator with impacts provides a much broader frequency range for the
power (RMS voltage in Fig. 15.2a). Two existing solutions (Fig. 15.2: with
and without impacts) are characterized by different resonator amplitudes.
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The results show that the basin of attraction for the impacting solution erodes
strongly with the increasing frequency (Figs. 15.4 and 15.5). The influence
of initial conditions on output energy is significant within the broaden band
resonance curve, effecting multi-solution phenomenon.

A possible development of the proposed analysis consists in applying dy-
namical integrity arguments [14] to the basins of attraction reported in Fig.
15.4. This will allow us to detect the robustness of the two competing solu-
tions with respect to changes in initial conditions, and thus will permit to
judge on the reliability of the proposed system in harvesting energy.
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