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Abstract: A bistable dynamical system with the Duffing potential, fractional
damping, and random excitation has been modelled. To excite the system, we
used a stochastic force defined by Wiener random process of Gaussian distri-
bution. As expected, stochastic resonance appeared for sufficiently high noise
intensity. We estimated the critical value of the noise level as a function of
derivative order q. For smaller order q, damping enhancement was reported.

1. Introduction

Fractional order systems have been intensively studied in various contexts [1]. In mechanical

engineering, there were suggestions to apply it for various complex non-viscous, memory

effected damping effect like rubbing or composite material response including natural wooden

composites. Finally, it was used to model viscoelatic properties [2-5].

Particularly, the fractional derivative was used to characterize visco-elastic properties of

beams and plates [1]. Important features of such systems include their dynamical memory

of previous states, which could imply additional internal variables [6, 7]. Consequently, the

modelling of the system instanenous states involves their time evolution history. Note that

the memory effects combined with additional nonlinearities can be a source of hysteresis

which is very common in engineering systems [1,8,9]. The fractional order damped rotor

system with rubbing malfunction was proposed [10, 11].

On the other hand, randomly excited nonliner systems show a number of interesting fea-

tures such as stochastic Hopf bifurcation [8], period-doubling bifurcations [9] and a stochastic

resonance phenomenon [12]. This resonance is characterized by the flow over the potential

barrier. One of the simplest system with such a barrier may be defined as a single degree-

of-freedom, double well Duffing potential. In such a system, the occurrence of a single well

escape is a result of competition between damping and excitation. Consequently, this escape
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can be associated with stochastic resonance (or coherence resonance [13]). This phenomenon

is expected to be more complicated in higher system dimensions (or memory effect), which

can be introduced by hidden variables of non-viscous damping [7]. Motivated by mechanical

engineering applications, fractional damping effects were studied in the context of resonance

conditions, synchronization effects, and also appearance of chaotic solutions [14, 15]. It

was found out [16] that the existence of the fractional-order derivative could affect not only

damping, but also stiffness, which were characterized by equivalent damping and equivalent

stiffness coefficients, respectively. The fractional calculus is going to have a fruitful field in

many scientific areas. Assumed in the present paper, the cubic term would be useful in mod-

elling a realistic nonlinear response of spring and dry friction system as reported in paper [17].

The approach of the fractional calculus looks promising to model a nonlinear phenomenon

of the dry friction model found in [17]. It would be adopt to description of diffusion and

wave propagation phenomenon, the system identification in robotics, telecommunications,

and also for control systems [18]. Recently, the phenomenon of vibrational resonance was

also investigated in wide parameter range of Duffing systems with fractional-order damping

[19]. The authors of Ref. [19] claimed that factional-order damping can cause a change

in a number of the steady stable states and then lead to single- or double-well resonance

behaviour.

Cao et al. [20] investigated the fractionally damped system response by using phase

diagrams, bifurcation diagrams and Poincare maps in a wide range of the fractional order

changes from 0.1 to 2.0. Their analysis results show that the fractional order damped Duffing

system could be treated as a bifurcation parameter. By continuing these studies, Chen at

al. [21] and Hu at al. [22] analyzed such a system with a bounded noise excitation term

composed of harmonic excitation with an additional random phase. The authors investigated

the appearance of bimodal amplitude through a corresponding probability density. This

signalled the existence of a stochastic jump.

In this paper, we continue the investigations described in [21, 22]. However, in contrast

to Ref. [22], we terminate the harmonic component and study the non–linear Duffing system

with a fractional derivative subjected to a random excitation force defined as generated with

an additive white Gaussian noise term.
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2. The model and equations of motion

Our discussion starts with the corresponding Duffing equation supplemented by addi-

tional fractional damping and random forcing

d2x

dt2
+ β

dqx

dtq
− x+ x3 = f(t), (1)

where dqx/dtq is the Grünwald-Letnikov fractional derivative [1, 22] with an order q

dqx

dtq
=a Dqx(t) = lim

∆t→0

[ 1

(∆t)q

[ t−a

∆t
]

∑

j=0

(−1)j
(

q

j

)

x(t− j∆t)
]

, (2)

In the Eq. 2
[

t−a
∆t

]

means the integer part, where ∆t denotes the integration time step,

and a is an arbitrary number smaller than t. This defines the length of system memory. In

the following analysis we assumed a = 0, which corresponds the memory length of whole

trajectory. The binomial coefficients in the above sum can be expressed by the Euler’s

Gamma function

(

q

j

)

=
q!

j!(q − j)!
=

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
, (3)
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Figure 1. Bistable potential V (x) (restore force (Eq. 1) Fx = −dV (x)/dx = x− x3) used in

the calculations (Eq. 5) (a), Gaussian probability distribution of a random force f(t). (Eq.

1) (b).
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Figure 2. The displacement signals to noise ratio σx/σF versus noise intensity σF for

different orders of derivative q.

Excitation force f(t) has been defined as stationary Gaussian additive white noise with

standard deviation σf described by the corresponding autocorrelation function:

< f(t)f(t+∆t′) > = 1/T0

∫ T0

0

f(t)f(t+∆t′)dt

= (σf )
2δ(∆t′), (4)

where δ(.) is the Dirac delta, ∆t′ is an arbitrary time difference, and T0 is a large time

interval.

The considered potential describes the restore force in Eq. 1

V (x) =
x2

2
−

x4

4
(5)

is given in Fig. 1a. Note that the dynamical model in Eq. 1 possesses damping and excitation

terms. Due to competition between dissipating and generating mechanical energy, these two

terms lead to balancing the total energy at a particular level. This level could be higher or

lower with respect to the energy barrier (∆V = 0.25, see Fig. 1a). This level signals also a

vicinity of cross-well jump conditions in the dynamical system.

Consequently, as level σf increases, the system response (measured by a standard de-

viation σx of the displacement x fluctuations) would be of sufficiently larger magnitude to

pass the system states through the potential barrier.

Evidently, such a jump corresponds to the bifurcation of single potential well vibration

of a relatively small amplitude into cross-barrier oscillations of a fairly large amplitude.
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3. Simulation results

By simulating the dynamical system (Eq. 1) with increasing noise level conditions, we fol-

lowed the scenario of stochastic coherence resonance [12, 22, 25]. For numerical calculations

the Matlab environment has been used with non–dimensional parameters, where β = 0.15 is

damping coefficient and excitation force represented by noise level is in range of σF ∈ (0÷0.3).

The initial conditions were fixed as x0 = 0.21, v0 = 0.31. The integration step ∆t = 0.005,

simulation time interval in terms of estimated time instants tn ∈ [0, 800], where first 400

instants were cut off as a transient part.
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Figure 3. Number of hops versus noise intensity σF for different orders of derivative q;

and (b) critical curve of transitions begin between the potential wells via increasing orders

of derivative q (red dots).

Figure 2 shows the signal-to-noise ratio versus increasing noise level σf . Note that the

calculations have been made for different order of damping term q. For each simulation in

terms of q, the averaged noise results have been plotted. The average include its 10 different

Gaussian noise realizations. It is obvious that the stochastic resonance, corresponding to the

increase of maximum σx/σF , is characterized by different noise level σf for different q.

On the way to a solution with the most frequent (coherent) jumps of the large amplitude,

a single hop between potential wells occurs. Investigated this effect in greater detail in Fig.

3, we show the number of hops versus noise levels σf for various orders of derivative q. Figure

3b illustrates the dependence of the solution transition (single hop appearance between the

potential wells in simulation time) via a function of critical noise level versus an increasing

order of derivative q. The corresponding formula for plotting the curve presented in Fig. 3b

can be expressed as a polynomial function, obtained in a standard approach by means of the

least squares method:
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σF (q) = −0.087q2 + 0.17q + 0.0059. (6)

4. Conclusions

In summary, our main results indicate that the decreasing order of derivative q (Eq. 1)

enhances effective damping and leads to a different response of the system analyzed. Note

that the present calculations were made for chosen system parameters but the final conclusion

is of a general character. Namely, reaching cross barrier oscillations in a stochastic conditions,

and simultaneous appearance of stochastic coherence resonance can be easier for smaller q

(see Fig. 2). This implies smaller damping as a result of the fractional order.
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