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Abstract. We study the superconducting state of Sr2RuO4 on the bases of a phenomenological but orbital
specific description of the electron-electron attraction and a realistic quantitative account of the electronic
structure in the normal state. We found that a simple model which features both ‘in plane’ and ‘out of
plane’ coupling with strengths U‖ = 40 meV and U⊥ = 48 meV respectively reproduced the experimentally
observed power law behaviour of the low temperature specific heat Cv(T ), superfluid density ns(T ) and
thermal conductivity in quantitative detail. Moreover, it predicts that the quasi-particle spectrum on the γ-
sheet is fully gaped and the corresponding order parameter breaks the time reversal symmetry. We have also
investigated the stability of this model to inclusion of further interaction constants in particular ‘proximity
coupling’ between orbitals contributing to the γ sheet of the Fermi surface and the α and β sheets. We found
that the predictions of the model are robust under such changes. Finally, we have incorporated a description
of weak disorder into the model and explored some of its consequences. For example we demonstrated that
the disorder has a more significant effect on the f -wave component of the order parameter than on the
p-wave one.

PACS. 74.70.Pq Ruthenates – 74.20.Rp Pairing symmetries (other than s-wave) – 74.25.Bt Thermody-
namic properties

1 Introduction

The symmetry of the order parameter in superconduct-
ing Sr2RuO4 has been a subject of intense experimental
and theoretical interest in recent years [1,2]. It is proba-
bly the best candidate, currently, for an odd-parity, spin
triplet, superconductor which would be a charged parti-
cle analogue of superfluid 3He [3]. Although a number of
other superconductors are also possible spin-triplet super-
conductors (including UPt3, UGe2, ZrZn2, and Bechgaard
salts) strontium ruthenate is probably the one which is
best characterized experimentally. Samples can be grown
which have exceptionally long mean free paths [4], and
above Tc the normal state is a Fermi liquid with a well
understood Fermi surface [5].

Currently controversy exists over two key aspects of
the Sr2RuO4 pairing state. Firstly, the gap function sym-
metry is still not known. Rice and Sigrist [6] suggested
several possible gap functions for Sr2RuO4 corresponding
to analogues of superfluid phases of 3He. Of these only
the analogue of the Anderson-Brinkman-Morel (ABM)
state [3],

d(k) ∼ (kx + iky)êz, (1)

a e-mail: James.Annett@bristol.ac.uk

is consistent with the observations of a constant a − b
plane Knight shift [7] and spin susceptibility [8] below Tc.
This state is also consistent with the µ-SR experiments
which show spontaneous time reversal symmetry break-
ing at Tc [12]. However this gap function has no zeros on
the three cylindrical Fermi surface sheets [5] of Sr2RuO4,
in direct contradiction to several experiments which indi-
cate that the gap function has lines of zeros on the Fermi
surface [9–11]. This discrepancy is not easily resolved since
a complete group theoretic classifications of all symmetry
distinct pairing states in tetragonal crystals [13–18] do not
include any states which have both spontaneous time re-
versal symmetry breaking at Tc and symmetry required
line nodes on a cylindrical Fermi surface [17]. A number
of ‘f-wave’ gap functions have been proposed [19–21] for
Sr2RuO4,

d(k) ∼ f(k)êz , (2)

where f(k) is an l = 3 spherical Harmonic function.
Such gap functions have constant a− b plane Knight shift
and may have both time reversal symmetry breaking and
line nodes, however in tetragonal symmetry crystals they
are always either of mixed symmetry (requiring a double
phase transition) or are in the same symmetry class (Eu)
as l = 1 ‘p-wave’ states which do not have line nodes. Such
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f -wave functions may be possible physically (depending
on the details of the actual pairing interaction), but the
line nodes are not required by the symmetry of the pairing
state.

The second controversy about the Sr2RuO4 gap func-
tion concerns the presence of three different Fermi surface
sheets, α, β and γ. The orbital dependent superconductiv-
ity model of Agterberg, Sigirst and Rice [24] envisioned
a dominant gap on one part the Fermi surface (origi-
nally α, β), with the gap function on the other band only
arising from interband coupling and hence being signifi-
cantly smaller. This theory predicted that weak impurity
scattering would destroy the small gap on the inactive
sheet, and hence lead to a finite residual density of states
at zero energy. However the experimental specific heat
data [9] shows that CV /T is zero at T = 0, and hence
there is a finite order parameter on all sheets of the Fermi
surface. In a recent letter, Zhitomirsky and Rice [25] have
argued that the gap function of superconducting stron-
tium ruthenate can be described by an effective, k-space,
interband-proximity effect. In this model they propose that
the superconductivity is due to an attractive interaction
in the p-wave channel, which is acting almost entirely on
one sheet of the Fermi surface, the γ sheet. The other two
Fermi surface sheets, α and β are driven to become super-
conducting because of a “proximity effect” or Josephson
like coupling between the γ and α, β bands. This model
has a number of features which are consistent with the ex-
perimental facts, such as the presence of both line-nodes in
the gap function and spontaneous time reversal symmetry
breaking below Tc. Furthermore, if the interband Joseph-
son coupling energy is chosen to be sufficiently large, then
the energy gap at low temperatures is moderately large on
all the Fermi surface sheets and there is no second peak
below Tc in the specific heat capacity.

In a recent paper we have proposed a quite general
semi-phenomenological methodology for studying the pos-
sible superconducting states of Sr2RuO4. In this approach
one chooses, more or less systematically, orbital and po-
sition dependent interaction constants to describe the
electron-electron attraction. The simplest useful model we
have studied prominently featured interlayer coupling [26].
This model characterizes the pairing interaction in terms
of two nearest-neighbor negative-U Hubbard interactions,
one, U‖ acts between Ru dxy in a single RuO2 plane,
while the second, U⊥ acts between Ru dxz dyz orbitals
between planes. When these two parameters are chosen
so as to give a single phase transition temperature at the
observed Tc of 1.5 K we find excellent agreement with
the measured specific heat, penetration depth and thermal
conductivity data. The gap function has both time rever-
sal symmetry breaking, but also horizontal lines of nodes
in the planes kz = ±π/c on the β Fermi surface sheet.
The γ sheet remains node-less, with a gap function of the
form d(k) ∼ (sin kx + i sinky)êz , corresponding to the 2-d
analogue of the 3He A-phase. The predicted gap function
is similar to that of Zhitomirsky and Rice (ZR) [25], but
differs in that it is more or less same size on all three Fermi
surface sheets. Moreover, while ZR rely on ‘proximity cou-

pling’ to avoid the double phase transition we exploit the
freedom provided by the experimental data and achieve
the same end by fixing both U‖ and U⊥ so that there is
only one transition at the observed Tc = 1.5 K.

The purpose of this paper is to clarify a number of
unresolved questions concerning the interlayer coupling
model. Firstly we show in Section 3 that the results of
the model are quite generic, and do not depend sensitively
on the choice of the specific Hubbard model parameters
which we used in reference [26]. Secondly we examine the
effects of weak disorder on the gap function (Sect. 4). We
show that weak disorder can suppress any f -wave compo-
nents of the gap function, while leaving the p-wave order
parameter relatively unchanged. Finally, in Section 5 we
compare our interlayer coupling scenario with the inter-
band proximity effect model of Zhitomirsky and Rice [25].
In our model the interband proximity effect arises from
adding an “assisted hopping” term in the Hamiltonian.
We find that small values of this parameter lead to a sin-
gle phase transition for all bands, but do not give good
agreement with experimental specific heat data.

2 Gap symmetry and pairing basis functions

Let us begin by reviewing briefly the symmetry princi-
ples which are used to classify different pairing symmetry
states in odd-parity superconductors. We shall use these
principles to contrast the different pairing states that have
been proposed for strontium ruthenate.

On very general ground we expect that the phase tran-
sition into the superconducting state is of second order,
and so there exists an order parameter, or set of order pa-
rameters, ηi(r), i = 1, . . . n. For superconductors these or-
der parameters are complex, transforming under the U(1)
gauge symmetry as ηi → eiθηi. Therefore the Ginzburg-
Landau Free energy can always be expanded as

Fs = Fn +
∫

d3r

(
�

2

2mijkl
∂iη

∗
j (r)∂kηl(r)

+ αijη
∗
i (r)ηj(r) + βijklη

∗
i (r)η∗

j (r)ηk(r)ηk(r) + . . .

)
(3)

where summation convention is implied for the indices i, j
etc., and as usual ∂i ≡ ∇i−2eiAi/�, with A the magnetic
vector potential.

If the normal state above Tc possesses a symmetry
group G, then the order parameters ηi can be grouped
into terms corresponding to the different irreducible rep-
resentations Γ of G, transforming under symmetry opera-
tions as

ηΓ
i → RΓ

ij(g)ηΓ
j (4)

where g ∈ G, and the matrices RΓ
ij(g) constitute the rep-

resentation Γ of the group G.
The general theory of group representations implies

that we can choose a basis in which the matrix αij is block
diagonal, with each block corresponding to an irreducible
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Table 1. Irreducible representations of even and odd parity
in a tetragonal crystal. The symbols X, Y Z represent any
functions transforming as x, y and z under crystal point group
operations, while I represents any function which is invariant
under all point group symmetries.

Rep. symmetry Rep. symmetry

A1g I A1u XY Z(X2 − Y 2)

A2g XY (X2 − Y 2) A2u Z

B1g X2 − Y 2 B1u XY Z

B2g XY B2u Z(X2 − Y 2)

Eg {XZ, Y Z} Eu {X, Y }

Table 2. Products of the irreducible representations of D4h

point group symmetry.

⊗ A1 A2 B1 B2 E

A1 A1 A2 B1 B2 E

A2 A2 A1 B2 B1 E

B1 B1 B2 A1 A2 E

B2 B2 B1 A2 A1 E

E E E E E A1 ⊕ A2 ⊕ B1 ⊕ B2

representation, Γ . In this basis the full Ginzburg-Landau
Free energy is of the form

Fs = Fn +
∫

d3r


∑

Γ,Γ ′

�
2

2mΓΓ ′
ijkl

∂iη
Γ∗
j (r)∂kηΓ ′

l (r)

+
∑
Γ

αΓ
ijη

Γ∗
i (r)ηΓ

j (r) +
∑

ΓΓ ′Γ ′′Γ ′′′
βΓΓ ′Γ ′′Γ ′′′

ijkl ηΓ∗
i (r)

× ηΓ ′∗
j (r)ηΓ ′′

k (r)ηΓ ′′′
l (r)


 . (5)

The quadratic term αΓ
ij involves only a single representa-

tion, Γ . At Tc, in general, only a single irreducible repre-
sentation will have a zero eigenvalue of the block diagonal
matrix αΓ

ij . Therefore only the components of the order
parameter ηΓ

i corresponding to that eigenvector will be-
come non-zero just below Tc.

Now let us apply these very general principles to the
specific case of spin-triplet pairing in Sr2RuO4. This is
a body-centred tetragonal crystal with inversion symme-
try. The relevant crystal group is D4h, and Table 1 shows
its irreducible representations. For each representation its
symmetry is denoted by a typical function, where the
symbols X , Y , Z represent any functions which trans-
form as x, y and z under the point group operations,
and I means any function which is invariant under all
point group operations. The representations A1g . . . Eg

have even parity, while A1u . . . Eu have odd parity. Ta-
ble 2 shows the multiplication table for the irreducible
representations, i.e. how direct products of representation

matrices Γ ⊗ Γ ′ decompose into a sums of block diagonal
matrices Γ1 ⊕ Γ2 ⊕ . . .

An immediate consequence of the multiplication Ta-
ble 2 is that in tetragonal crystals the order parameter is
either of a single representation Γ only, or there are two
or more distinct thermodynamic phase transitions. This
is because to quadratic (or higher) order in the Ginzburg-
Landau free energy there are no symmetry allowed cou-
pling terms of the form

βΓ ′ΓΓΓ
ijkl ηΓ ′∗

i (r)ηΓ
j (r)ηΓ

k (r)ηΓ
l (r)

in equation (5). The proof [17] is simply that Γ ′⊗Γ⊗Γ⊗Γ
never contains the identity representation A1g, and hence
such terms are not allowed as quartic invariants of the Free
energy (or at higher order). In the absence of such terms
the free energy functional is always of at least quadratic or-
der in the subdominant order parameter ηΓ ′

i (r), and hence
these subdominant components can only become non-zero
in a separate phase transition below Tc.

Using these irreducible representations we can expand
the BCS gap function in terms of functions of each sep-
arate symmetry class. For odd parity pairing states we
can represent the BCS gap function by a vector d(k) or a
symmetric 2 × 2 complex matrix(

∆↑↑(k) ∆↑↓(k)

∆↑↓(k) ∆↓↓(k)

)
=

(
idy(k) − dx(k) dz(k)

dz(k) dx(k) + idy(k)

)

(6)
where ∆↑↓(k) = ∆↓↑(k) and ∆σσ′ (k) = −∆σσ′(−k). For
each irreducible representation we can choose a complete
set of orthonormal basis functions in the Brillouin zone,
γΓ

i (k). Expanding the gap function in terms of these func-
tions we have

∆σσ′ (k) =
∑

i

∆Γ
iσσ′γΓ

i (k). (7)

The expansion coefficients essentially provide the set of or-
der parameters in equation (5). The basis functions must
be periodic in reciprocal space, γΓ

i (k) = γΓ
i (k + G), or

equivalently, they must obey periodic boundary condi-
tions in the 1st Brillouin zone. They can be chosen, most
naturally, in terms of their real-space Fourier transforms,
which correspond to lattice sums of the real-space Bravais
lattice. For a body-centred tetragonal crystal, such as
Sr2RuO4 shown in Figure 1, the leading basis functions
correspond to the four nearest-neighbour in-plane lattice
vectors, R = ±aêx and R = ±aêy, giving two odd par-
ity basis functions: sin kxa and sin kya. The eight body-
centred lattice vectors R = ±a

2 êx ± a
2 êy ± c

2 êz lead to the
four odd-parity basis functions shown in the last column
of Table 3 (where for simplicity we have chosen units of
length such that a = 1). In the models which we investi-
gate in the remainder of this paper, we shall assume that
these basis functions, Table 3, are sufficient to describe the
gap function. Physically this corresponds to the assump-
tion that the paring interaction Vσσ′ (r, r′) is short ranged
in real-space.



304 The European Physical Journal B

Fig. 1. Body-centred tetragonal lattice, showing the nearest
neighbour pairs in-plane, and between planes.

Table 3. Basis functions γΓ
i (k) for the odd parity irreducible

representations of body-centred tetragonal crystals.

Rep. in-plane inter-plane

A1u - -

A2u - cos kx
2

cos
ky

2
sin kzc

2

B1u - sin kx
2

sin
ky

2
sin kzc

2

B2u - -

Eu sin kx sin kx
2

cos
ky

2
cos kzc

2

sin ky cos kx
2

sin
ky

2
cos kzc

2

Considering Table 1 we can see that in Sr2RuO4 “p-
wave” pairing states can correspond to either the A2u,
(or pz) representation or the doubly degenerate Eu repre-
sentation (px, py). The only symmetry distinct “f -wave”
pairing states are the B1u and B2u representations, corre-
sponding to fxyz and f(x2−y2)z type symmetries. Neither
of these states can be used in the case of a two-dimensional
single-plane model of Sr2RuO4, since they both become
zero in the plane kz = 0. It is also interesting to note that
in Table 3 there are no basis functions of A1u or B2u sym-
metry. Pairing in these channels would require long range
interactions extending to at least the inter-plane second
nearest neighbors.

In the light of these symmetry principles let us com-
ment on a number of the possible gap functions which
have been proposed for Sr2RuO4. Among the five states
described by Rice and Sigrist [6] the only one consistent
with the Knight shift experiments is [17]

d(k) = (sin kx + i sinky)êz (8)

belonging to the Eu representation of Table 3. It breaks
time reversal symmetry, consistent with the µ-SR exper-
iments of Luke et al. [12], and leads to a spin suscepti-
bility which is constant below Tc for fields in the a − b
plane, consistent with Knight shift [7] and neutron scat-
tering experiments [8]. However it has no gap nodes on a
Fermi surface of cylindrical topology, such as the α, β and
γ sheets of Sr2RuO4, and therefore is inconsistent with
the heat capacity [9] penetration depth [10] and thermal
conductivity experiments [11].

On the other hand the f -wave gap function proposed
by Won and Maki [20]

d(k) ∼ kz(kx ± iky)2êz (9)

has both line nodes and broken time reversal symmetry
below Tc. However from the symmetry analysis above, it is
clear that this does not correspond to a single irreducible
representation of the symmetry group. It is a sum of the
function kz(k2

x−k2
y), belonging to B2u and kxkykz belong-

ing to B1u. Although they would be degenerate in a system
with cylindrical symmetry, in a tetragonal crystal they will
be non-degenerate and hence have different Tcs. The B1u,
B2u states individually possess time reversal symmetry.
Therefore with this order parameter we would expect to
find a specific heat anomaly with two transitions, and time
reversal symmetry breaking would only occur at temper-
atures below the lower transition.

The f -wave order parameter proposed by Graf and
Balatsky [19],

d(k) ∼ kxky(kx + iky)êz (10)

is in the same symmetry class as Eu, since B2 ⊗ E =
E in Table 2. Therefore in the sense of pure symmetry
arguments the gap nodes in planes kx = 0 and ky = 0
are “accidental”. Such a gap function is certainly valid,
but the nodes are present for reasons connected with the
specific microscopic pairing interaction employed, and not
required by symmetry alone. This comment also applies
to the B1 ⊗ E f -wave state

d(k) ∼ (k2
x − k2

y)(kx + iky)êz (11)

discussed by Dahm, Won and Maki [21], and Eremin
et al. [22,23].

The full group theoretic classification in tetragonal
crystals [13–18] and the above analysis does not show
a single pairing state with both symmetry required lines
of nodes and spontaneously broken time reversal symme-
try below Tc. Therefore, if we accept both the µ-SR and
low temperature thermodynamic and transport measure-
ments, then we must consider states which have lines of
nodes for specific microscopic reasons, rather then for pure
symmetry reasons.

In the remainder of this paper we shall focus on the
specific model which we proposed in a previous paper [26],
in which the lines of nodes appear in the plane kz = ±π/c,
derived from the pair of inter-plane basis functions of Eu:

sin
kx

2
cos

ky

2
cos

kzc

2
, cos

kx

2
sin

ky

2
cos

kzc

2

from Table 3, as originally suggested by Hasegawa
et al. [27].

3 Interlayer coupling Hamiltonian

Since the underlying microscopic mechanism for super-
conductivity in Sr2RuO4 is not known we choose to adopt
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a phenomenological approach to the pairing mechanism.
We first make an accurate tight binding fit to the exper-
imentally determined Fermi surface [5,28] and then in-
troduce model attractive interactions between the differ-
ent orbitals centered on different sites. We can investigate
different ‘scenarios’ depending upon which model inter-
actions are assumed to dominate. Frequently, when these
pairing interaction parameters are chosen to reproduce the
experimental Tc, there is no freedom to adjust the parame-
ters further. Once the parameters have been selected, then
a number of different experimental quantities can be cal-
culated independently and compared to experiment. The
goal is to find one specific paring scenario which agrees
with all of the experimental observations. If this can be
achieved then one has found an effective Hamiltonian for
the pairing, which can be interpreted physically. This ef-
fective pairing Hamiltonian can then be used to guide the
search for the true microscopic Hamiltonian. This method-
ology has proved very useful in cuprate superconductiv-
ity [29] and here we shall deploy it to study Sr2RuO4.

The effective pairing Hamiltonian we consider is a sim-
ple multi-band attractive U Hubbard model:

Ĥ =
∑

ijmm′,σ

((εm − µ)δijδmm′ − tmm′(ij)) ĉ+
imσ ĉjm′σ

− 1
2

∑
ijmm′σσ′

Uσσ′
mm′(ij)n̂imσn̂jm′σ′ (12)

where m and m′ refer to the three Ruthenium t2g orbitals
a = xz, b = yz and c = xy and i and j label the sites of a
body centered tetragonal lattice.

The hopping integrals tmm′(ij) and site energies εm

were fitted to reproduce the experimentally determined
Fermi surface [5,28]. The nearest neighbour in-plane hop-
ping integrals along R = êx, where the ab plane lattice
constant is taken to be 1, are constrained by the orbital
symmetry to have the following form

[tmm′ ] =


 tax 0 0

0 tbx 0
0 0 t


 (13)

(and similarly for R = êy taking into account sign changes
due to orbital symmetries). The next nearest neighbour in-
plane hopping integrals along êx + êy were assumed to be
of the form

[tmm′ ] =


 0 tab 0

tab 0 0
0 0 t′


 . (14)

The parameter t′ controls the shape of the γ-band Fermi
surface, while the parameter tab determines the hybridiza-
tion between the a and b orbitals and hence the shape
of the α and β Fermi surfaces. The c-axis magnetic field
de Hass van Alphen data [28] gives the areas and cy-
clotron masses of the three Fermi surface sheets, and these
six numbers can be fit exactly with t = 0.08162 eV,
t′ = −0.45t, tax = 1.34t, tbx = 0.06tax, tab = 0.08tax,
and the on-site energies were εc = −1.615t and εa = εb =
−1.062tax.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X

Γ

α

β
γ

k y
 /a

 π

kx /a π

Fig. 2. The Fermi surface of Sr2RuO4 in the plane kz = 0,
obtained by fitting the de Hass data of Bergman et al. [5]. Note
that the alpha Fermi surface sheet has only two-fold symmetry,
because of the shape of the Brillouin zone boundary.

To obtain a three dimensional Fermi surface we as-
sumed that the dominant inter-plane hopping is along the
body-centre vector R = 1

2 (êx + êy +cêz) and has the form

[tmm′ ] =




t⊥ thyb thyb

thyb t⊥ thyb

thyb thyb 0


 (15)

and similarly for R = 1
2 (±êx ± êy ± cêz) with appropri-

ate sign changes. The parameter thyb is the only term in
the Hamiltonian which mixes the c orbitals with a and b.
With only these two parameters it is not possible to fit
exactly the full three dimensional Fermi surface cylinder
corrugations determined by Bergemann et al. [5], but the
parameters thyb = 0.12tab, t⊥ = −0.03tab give a reason-
able agreement for the dominant experimental corruga-
tions. Figure 2 shows the fitted Fermi surface in the plane
kz = 0 in the extended zone-scheme. Note that the α sheet
has only two-fold symmetry, due to its position centred on
the Brillouin zone boundary at X .

The set of interaction constants Uσσ′
mm′(ij) describe

attraction between electrons on nearest neighbour sites
with spins σ and σ′ and in orbitals m and m′. Thus our
actual calculations consists of solving, self-consistently,
the following Bogoliubov-de Gennes equation:

∑
jm′σ′


Eν − Hmm′(ij) ∆σσ′

m,m′(ij)

∆∗σσ′
mm′(ij) Eν + Hmm′(ij)




uν

jm′σ′

vν
jm′σ′


 = 0,

(16)
where Hmm′(ij) is the normal spin independent part of the
Hamiltonian, and the ∆σσ′

mm′(ij) is self consistently given
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in terms of the pairing amplitude, or order parameter,
χσσ′

mm′(ij),

∆σσ′
mm′(ij) = Uσσ′

mm′(ij)χσσ′
mm′(ij). (17)

defined by the usual relation

χσσ′
mm′(ij) =

∑
ν

uν
imσvν∗

jm′σ′(1 − 2f(Eν)) , (18)

where ν enumerates the solutions of equation (16).
We solved the above system of Bogoliubov de Gennes

equations including all three bands and the three dimen-
sional tight-binding Fermi surface. We considered a large
number of different scenarios for the interaction constants.
First we assumed that the pairing interaction Uσσ′

mm′(ij)
for nearest neighbours in plane is only acting for the c
(dxy) Ru orbitals. In this case both a d-wave (dx2−y2)
pairing state and p-wave ((kx +iky)êz) states are possible.
The d-wave state has line nodes, but would not be consis-
tent with the experiments showing constant Knight shift
and time reversal symmetry breaking below Tc. Therefore
we discard such solutions here, and only concentrate on
the odd-parity spin triplet solutions. The motivation is
not to explain the microscopic pairing mechanism, but to
model pairing state produced by various types of effec-
tive attractive interactions. These attractive interactions
may arise from, for instance, ferromagnetic spin fluctu-
ations [6,22,23,30], which can favour spin triplet pair-
ing compared to the d-wave solutions. However, their ori-
gin may be more complicated, for example a combined
electron-phonon and spin fluctuation mechanism.

With only the nearest neighbor in-plane interactions
the set of possible odd-parity, spin triplet, solutions that
we found never includes any possible state with nodes of
the gap. Therefore we extended the model to include inter-
plane interactions. Using two interactions, a nearest neigh-
bor in-plane interaction, (i − j in Fig. 1), and a nearest
neighbor inter-plane interaction, (i − l in Fig. 1) which
fulfill the tetragonal symmetry, we have the two types of
basis functions for the gap equation given in Table 3. Then
we have the possibility of horizontal line nodes in the gap
arising from the zeros of cos (kzc/2) at kz = π/c on a
cylindrical Fermi surface [27].

Because the pairing interactions Uσσ′
mm′(ij) were as-

sumed to act only for nearest neighbor sites in or out
of plane, the pairing potential ∆σσ′

mm′(ij) is also restricted
to nearest neighbors. We further focus on only odd par-
ity (spin triplet) pairing states for which the vector d ∼
(0, 0, dz), i.e. ∆↑↓

mm′(ij) = ∆↓↑
mm′(ij), and ∆↑↑

mm′(ij) =
∆↓↓

mm′(ij) = 0. Therefore in general we have the follow-
ing non-zero order parameters (i) for in plane bonds:
∆

‖
mm′(êx), ∆

‖
mm′(êy), and (ii) for inter-plane bonds:

∆⊥
mm′(Rij) for Rij = (±a/2,±a/2,±c/2).
Taking the lattice Fourier transform of equation (17)

the corresponding pairing potentials in k-space have the

general form (suppressing the spin indices for clarity):

∆mm′(k) = ∆
‖px

mm′ sin kx + ∆
‖py

mm′ sin ky

+ ∆⊥px

mm′ sin
kx

2
cos

ky

2
cos

kzc

2

+ ∆
⊥py

mm′ sin
ky

2
cos

kx

2
cos

kzc

2

+ ∆⊥pz

mm′ sin
kzc

2
cos

kx

2
cos

ky

2

+ ∆⊥f
mm′ sin

kx

2
sin

ky

2
sin

kzc

2
. (19)

Note that beyond the usual p-wave symmetry of the sin kx

and sinky type for the c orbitals, we include all three ad-
ditional p-wave symmetries of the sin k/2 type which are
induced by the effective attractive interactions between
carriers on the neighboring out-of-plane Ru orbitals. These
interactions are also responsible for the f -wave symmetry
order parameters, ∆⊥f

mm′ , transforming as B1u in Table 1.
This latter is symmetry distinct from all p-wave order pa-
rameters in a tetragonal crystal, unlike the other f -wave
states discussed in the introduction [19–22]. The pz or-
der parameters ∆⊥pz

mm′ are of A2u symmetry. In contrast
the pairs ∆⊥px

mm′ , ∆
⊥py

mm′ are of the same Eu ‘p-wave’ sym-
metry as ∆

‖px

mm′ , ∆
‖py

mm′ . In general, the order parameters
in each distinct irreducible representations have different
transition temperatures, as expected from equation (5).

In a recent paper [26] we chose a particularly simple set
of attractive pairing interactions Uσσ′

mm′(ij). For in-plane
nearest neighbours we assumed that the pairing interac-
tion is only acting for the c (dxy) Ru orbitals

U‖mm′ =


0 0 0

0 0 0
0 0 U‖


 , where U‖ = 0.494t. (20)

On the other hand, given that the ruthenium a and b or-
bitals (dxz, dyz) are oriented perpendicularly to the planes
we choose to introduce the inter-plane interaction only for
these orbitals,

U⊥mm′ =


U⊥ U⊥ 0

U⊥ U⊥ 0
0 0 0


 , where U⊥ = 0.590t. (21)

Therefore we have, as a minimal set, only two coupling
constants U‖ and U⊥ describing these two physically dif-
ferent interactions.

As discussed earlier our strategy is to adjust these phe-
nomenological parameters in order to obtain one transi-
tion at the experimentally determined Tc. Thus, beyond
fitting Tc, there are no further adjustable parameters, and
one can compare directly the calculated physical proper-
ties of the superconducting states to those experimentally
observed. Consequently, if one obtains a good overall
agreement one can say that one has empirically deter-
mined the form of the pairing interaction in a physically
transparent manner. Evidently such conclusion is the prin-
ciple aim of the calculations.
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As we have shown in reference [26], this two param-
eter scenario gives an excellent agreement with the ex-
perimental specific heat [9], superfluid density [10] and
thermal conductivity [11]. We chose the constants U‖
and U⊥, so that there is a single phase transition at
Tc = 1.5 K, corresponding to the values given in equa-
tions (20) and (21). Below Tc the order parameters have
the symmetries ∆

‖py
cc = i∆

‖px
cc , ∆

⊥py

bb = i∆⊥px
aa as ex-

pected for an Eu pairing symmetry [24] (kx + iky)êz cor-
responding to the same time reversal broken pairing state
as 3He–A. We also found that a much lower tempera-
tures, additional transitions occurred where the f -wave
and pz order parameters become non-zero. The gap func-
tion has line nodes on the Fermi surface, in agreement with
experiment, only when the f -wave component is zero. Ar-
guing that the f -wave component would be suppressed by
impurities, we showed that with the f -wave component
removed, one obtains excellent agreement between the cal-
culated and experimental specific heat, penetration depth
and thermal conductivity. We show, in Section 4 below,
that this removal of the f-wave component is justified by
the presence of weak disorder.

It is important to ask how these results depend on the
details of the assumptions made in the model. In order to
test the stability of our results to variations in the model
we therefore introduced some additional subdominant in-
teraction parameters. For our initial exploration of the
issues involved we have generalized equations (20, 21) as
follows:

U‖mm′ =


u u u

u u u
u u U‖




U⊥mm′ =


U⊥ U⊥ u′

U⊥ U⊥ u′
u′ u′ u′


 . (22)

Reassuringly, with these modified parameters we obtained
a temperature dependence of the gap parameters which
are qualitatively similar to those for the original param-
eters. It is interesting to note that for fixed values of U⊥
and U‖ the changes of u and u′ hardly change the su-
perconducting transition temperature. We have systemat-
ically studied the effect of additional interactions, espe-
cially so on the line u = u′, and found small differences
compared to the u = 0 solution even for u as large as 0.28t.
The differences are mainly connected with the appearance
of out of plane components of ∆⊥

cc generated by the new
interactions as is evident from Figure 3. For larger val-
ues of u the difference becomes more significant (Fig. 3a).
Note, however, that only low temperature dependence of
the pairing amplitudes is affected. In Figure 3b we show
the variation of a few characteristic |∆mm| against u at
zero temperature. Clearly, for u > 0.3t there is a quali-
tative change of our solution leading to dominant out of
plane pairing components in all orbitals. Large u also af-
fects the critical temperature Tc. Interestingly, for finite u
we also observe increasing values of in-plane pairing am-
plitudes in the a and b channels: ∆⊥px

m,m′ and ∆
⊥py

m,m′ for
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cc | at zero tem-

perature versus the interaction parameter u(= u′).
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m, m′ = a, b. Reassuringly, the corresponding specific heat
(Fig. 4) is essentially unchanged and remains in equally
good agreement with the experiments. Therefore we con-
clude that the solution we have found is not very specific
to the precise details of the model parameters which we
assumed, but is a generic solution valid for at least some
range of the possible interaction parameters of the form
depicted in equation (22).

The quasiparticle energy gap structure which we ob-
tained is shown in Figure 5. The gap is finite everywhere
on the γ sheet, Figure 5d, although it is very anisotropic,
and becomes small when the Fermi surface approaches
near to the van Hove points at (π, 0) and (0, π). In con-
trast, the α and β Fermi surface sheets have gap zeros in
the vicinity of the lines kz = ±π/c. In the case of β the
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gap is zero to numerical accuracy on these nodal lines.
While in the case of α the gap is very small on these lines,
but not exactly zero. In fact there are eight point nodes
on the α sheet, as can be seen in Figures 5a, b. Two point
nodes lie just above the kz = π/c line at kz ≈ π/c + 0.085
at two different angles. Another pair lie just below, at
kz ≈ π/c− 0.085 at an angle rotated by φ = π/2. The re-
maining four are located in similar positions near the line
kz = −π/c. This interesting nodal structure arises from
the fact that the α Fermi surface cylinder is centered at
X in the Brillouin zone not at Γ (Fig. 2), and therefore it
has two-fold symmetry not four fold like β and γ. Notice
also that the excitation gap on the α sheet is non-zero
even when ∆aa = ∆ab = ∆bb = 0, because it is hybridized
to the c orbital and ∆cc 	= 0.

Note that this nodal structure of the gap is unchanged
by the presence of the small subdominant interaction
parameter u, in equation (22). However, upon increas-
ing the value of the u parameter eventually the results
change qualitatively, leading to appearance of additional
line nodes in γ (Fig. 6) for u = 0.32t. In this case the γ
band gap also develops a line node, similar to the behavior
of the β band.

4 Effects of disorder

As we noted it earlier, to obtain agreement with experi-
ment we had to eliminate the f -wave component ∆⊥f

mm′(T )
and we suggested that this can be done by an appeal to
the effects of a small amount of disorder. We shall now
substantiate this contention by explicit calculations.

In case of non-magnetic disorder our Hamiltonian can
be written

Ĥ =
∑

ijmm′,σ

((εm + εi − µ)δijδmm′ − tmm′(ij)) ĉ+
imσ ĉjm′σ

− 1
2

∑
ijmm′σσ′

Uσσ′
mm′(ij)n̂imσn̂jm′σ′ (23)

where εi is a random site energy. For a given configura-
tion of εi one can, in principle, perform calculations (Eqs.
(17–18)) and then average over many configurations. More
readily, for highly disordered systems it is possible to ap-
ply mean field theory of disorder by making use of the
Coherent Potential Approximation CPA [31–34].

Here however, as superconducting Sr2RuO4 samples
were found to be relatively clean, we can limit our analysis
to weak disorder and non-resonant impurity scattering.
Then knowing the scattering rate τ−1 we can apply the
Born approximation [35] in calculating the self-energy
of the disorder averaged Green function. Following this
Abrikosov-Gorkov approach, we assume that impurity
scattering will create a finite imaginary self energy of the
order

Σ(iω) = iτ−1sgn(ω). (24)

Thus our equation of self-consistency in the configura-
tionally averaged pair potential can be written in terms of
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Fig. 5. Lowest energy eigenvalues, Eν(k) on the Fermi surface;
α sheet in the plane kz = π/c + 0.085 (a) and kz = π/c +
0.085 (b), β (c) and γ (d) sheets in the plane kz = 0.

Matsubara frequencies ωn = (π/β)(2n + 1) as follows

∆σσ′
mm′(ij) = Uσσ′

mm′(ij)
∞∑

n=−∞
eiωnδ

× 1
β

∑
ν

uν
imσvν∗

jm′σ′

i(ωn + τ−1ωn/|ωn|) − Eν
, (25)
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Fig. 6. Minimum energy quasiparticle eigenvalues on the γ
Fermi surface sheet, E(kF), plotted in cylindrical polar coordi-
nates as functions of kz and a-b plane polar angle, θ. Parameter
values are u/t = 0.28 (a), 0.30 (b), 0.32 (c), respectively. One
can see that for u ≤ 0.3 the γ sheet gap is nodeless, while for
u > 0.3 line nodes appear at kz = ±π/c.
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where δ denotes a positive infinitesimal. Exchanging the
summations over ν and n indices equation (25) can be
written, after decoupling the summation over negative and
positive Matsubara frequencies, as

∆σσ′
mm′(ij) = −Uσσ′

mm′(ij)
1
β

∑
ν

uν
imσvν∗

jm′σ′

×
∞∑

n=0

Eν

(ωn + τ−1)2 + (Eν)2
. (26)

Conveniently the sum on the right hand site of equa-
tion (28) can be evaluated [36] and it leads to the final
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Fig. 8. Zero temperature order parameters |∆⊥px
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formula:

∆σσ′
mm′(ij) = −Uσσ′

mm′(ij)
∑

ν

uν
imσvν∗

jm′σ′

× 1
2π

ImΨ

(
1
2

+
β

2πτ
+

iEνβ

2π

)
. (27)

Note that in the limit of a clean system τ−1 → 0

1
2π

ImΨ

(
1
2

+
β

2πτ
+

iEνβ

2π

)
→ −(1 − 2f(Eν)) (28)

and equation (27) coincides with that of the clean system
(Eqs. (16–17)).

Thus, in a weak disorder limit we have again solved the
Bogoliubov-de Gennes equations including a small τ−1.
The results of our calculations are shown in Figure 7 where
we have plotted the order parameters |∆⊥px

aa |, |∆‖px
cc |,

|∆⊥f
aa | versus temperature. Evidently in the disordered

case the small f -wave amplitude (|∆⊥f
aa |) is reduced to

zero much more rapidly than the larger p-wave ones
(|∆⊥px

aa |, |∆‖px
cc |). Furthermore, in Figure 8 we show disor-

der dependence of these three paring amplitudes at zero
temperature. Clearly each order parameter is reduced to
zero in a typical Abrikosov-Gorkov like manner, becom-
ing zero approximately when the pair-breaking parameter
τ |∆clean(0)|/π ≈ 1.

From Figures 7 and 8 it is clear that, for moderate
scattering rates, there is a region where the f -wave gap
components are reduced to zero but the larger p-wave com-
ponents are more or less unaffected. Thus we conclude that
the simultaneous neglect of ∆⊥pz

mm′ and ∆⊥f
mm′ and τ−1 is

justified [26]. It would be an interesting experimental con-
firmation of this model, if ultra-clean samples were found
to have a second phase transition at a much lower tem-
perature than Tc ∼ 1.5 K.

5 Bond-proximity effects

To get a single superconducting transition temperatures
within our interlayer coupling model we are forced to fine
tune two interaction parameters. However, it has been pro-
posed [25] that a single transition can be obtained in an
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multiband model by allowing for a symmetry mixing in-
teraction of the type U(k,q) = g′f(k)g(q), where f(k)
and g(q) are order parameter symmetry functions for re-
spective bands.

It is the aim of the present section to check to which ex-
tend similar approach may be used in our bond model. We
start with short discussion of the source and magnitude
of symmetry mixing interaction. The description we have
used is a real space, two point near neighbour interaction
such as naturally arises in any multi-orbital, extended,
negative U Hubbard model, equation (12). To be quite
clear about this matter we recall that a generic pair-wise
interaction like U(r, r′), when expressed in the language
of a tight-binding model Hamiltonian will, in general, give
rise to four point interaction parameters Uij,kl. The orig-
inal Hubbard Hamiltonian makes use of the one point
parameters U

(1)
i = Uii,ii whilst the extended Hubbard

model is based on two point parameters U
(2)
i,j = Uij,ij .

Evidently our ‘bond’ model is a negative U-version of the
latter [37]. The symmetry mixing interactions [25] arise
from 3-site interactions U

(3)
i,j,l. The physics of this is of-

ten referred to as assisted hopping [38]. If one assumes,
as is normally the case in an isotropic substance, that
|U (1)| > |U (2)| > |U (3)| > |U (4)| then the ‘bonds’ repre-
sent stronger coupling than assisted hopping and should
be the preferred coupling mechanism. However, for the
tetragonal arrangement of Ru atoms in Sr2RuO4 this is
no more than a suggestion at present.

In the presence of a three point interaction U
(3)
i,j,l =

Uij,il = UI , for all nearest neighbours ijl such that i
and j are in one Ru plane while l is on a neighbouring one
(Fig. 1), the gap equation (Eqs. (16–18)) can be rewritten
in k-space as [39],

∆σσ′
mm′(k) =

1
N

∑
q

Uσσ′
mm′(k − q)χσσ′

mm′(q)

+
1
N

∑
q,oo′

Uσσ′
mm′,oo′(q,k − q)χσσ′

oo′ (q). (29)

where, as before,

χσσ′
mm′(k) = uν

kmσvν∗
km′σ′(1 − 2f(Eν) . (30)

In a body centered tetragonal crystal (Fig. 1) the var-
ious matrix elements of the general four point interac-
tion Umm′,oo′ responsible for p-wave paring can be written
(suppressing spin indices for clarity):

Ucc(k,q) = 2U‖V (k)V (q)

Umm′(k,q) = 8U⊥Ṽ (k)Ṽ (q) for m, m′ = a, b

Umm′,cc(k,q) = 8UI Ṽ (k)V (q) for m′, m = a, b

Ucc,mm′(k,q) = 8UIV (k)Ṽ (q) for m′, m = a, b (31)

where V (k) and Ṽ (k) are respectively:

V (k) = (sinkx + sin ky)

Ṽ (k) =
(

sin
kx

2
cos

ky

2
+ sin

ky

2
cos

ky

2

)
cos

kzc

2
. (32)
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Note that the three point interaction leads to an ex-
tra interlayer coupling proportional to UI . Interestingly,
the general form of the order parameter is the same as
previously derived (Eqs. (16–19)) despite the additional
three point coupling equation (32) in the self-consistency
relation equations (30–31).

It has to be noted that the presence of the inter-
action UI strongly changes Tc. To get its correct value
(1.5 K) for the present model we have taken U⊥ = 32 meV
and U⊥ = 40 meV and repeated our calculations for vari-
ous UI values. The results are shown in Figures 9 and 10.

Figure 9 shows the results for the amplitudes ∆
‖px
cc (T )

and ∆⊥px
aa (T ) including the three-point interaction. Note

that for UI = 0 (curves labelled by (1) in the figure) the
temperature where ∆

‖px
cc (T ) becomes non-zero is much

higher than that where ∆⊥px
aa (T ) becomes non-zero. It

is evident from the figure that for UI 	= 0 the parame-
ters ∆Γ

mm′(T ) for a, b and c orbitals vanish at the same
temperature and two transitions merge into one. Thus,
the proximity coupling mechanism identified by ZR [25]
in their band description of the electron-electron interac-
tion, also works in our bond model.

Intriguingly, although the proximity coupling works in
principle, the above mechanism does not seem to be help-
ful in the context of building phenomenological interac-
tions suitable to describe experimental data. To illustrate
this point we reproduce, in Figure 10, the specific heat
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corresponding to the set of ∆
‖px
cc (T ) and ∆⊥px

aa (T ) shown
in Figure 9. Clearly, as UI increases the second transition
at low temperature becomes enlarged and merges with the
first transition at higher temperature. However, the small
values of UI shown in Figures 9, 10 are not sufficient to
get the specific heat jump at Tc right. Therefore UI must
be large for the modified gap equation, equation (29), to
fit the experiments. By contrast, as we have demonstrated
earlier, if UI = 0 and the sizes of U⊥ and U‖ are adjusted
so that only one transition occurs both the low temper-
ature slope and the jump at Tc agrees with experiments.
Thus although we have not investigated models featur-
ing a ‘proximity effect’ induced by U (3) type of interac-
tions systematically we conclude that such interactions
are not needed to fit the available data. Of course, this
does not exclude any more general physical mechanisms
of the interband proximity effect proposed by Zhitomirsky
and Rice [25].

Finally, it is also interesting to see what are the effects
of disorder on the ‘orbital proximity effect’; the results
are shown in Figure 11. We see that, disorder can elimi-
nate the gap on α, β sheets, while leaving it almost un-
changed on γ. This feature of the proximity effect scenario
opens it up for experimental verification by measurement
on samples with increasing disorder. Evidently the effect
of disorder should be that the low temperature power laws
disappear due to the destruction of superconductivity on
the α, β sheets.

6 Conclusions

We have introduced a methodology for building semi-
phenomenological, attractive electron-electron interac-
tions bond by bond for calculating superconducting prop-
erties under circumstances when the physical mechanism
of pairing is not known. We deployed it to study p-wave
pairing in Sr2RuO4. A bond was described by an inter-
action constant Uσσ′

m,m′(ij) which depends on the sites i

and j, the orbitals m and m′, and their spin orienta-
tion σ and σ′. We have solved the appropriate Bogoliubov

de Gennes equations for a number of scenarios defined
by a small set of interaction constants. We have found
that the one for which U↑↓

cc (ij) = U⊥ for i and j being
nearest neighbour Ruthenium atoms in the Ru-O planes
and U↑↓

aa(ij) = U↑↓
bb (ij) = U⊥ for i and j being near-

est on neighbouring planes explained most of the avail-
able experimental data. Namely, the corresponding solu-
tion featured a gap function on the γ-sheet of the form
∆cc(k) ∼ sin kx + i sin ky and and a line of gap on the
β sheet. For this scenario the requirement that there be
only one transition at Tc 
 1.5 K fixed both U⊥ and U‖
and hence all further results could be regarded as quan-
titative predictions of the model. Remarkably, the model
gave a satisfactory account of the data for the specific heat
C(T ), superfluid density ns(T ) and the thermal conduc-
tivity κ(T ).

We have also investigated the stability of the model to
introduction of further interaction constants and disorder.
We found that the predictions of the model are robust to
changes of new interactions, while disorder mainly affects
the f -wave solution. Thus we can conclude that the ex-
perimental data support a simple model which describes,
quantitatively, the p-wave pairing observed in Sr2Ru04

on the basis of two orbital specific coupling constants:
U‖ = 40 meV U⊥ = 48 meV. The central physical feature
of the model is that U‖ corresponds to interaction between
electrons in the Ruthenium planes while U⊥ describes an
inter-plane interaction of roughly equal strength.

In view of the above results, we would like to emphasize
two points. Firstly, we have proposed an alternative to the
the ‘intra-band proximity effect’ model of Zhitomirsky and
Rice [25] for describing horizontal line nodes on the α, β
sheets of the Fermi Surface in superconducting Sr2RuO4.
Our bond model differs from theirs in the way the inter-
layer coupling is implemented. The extension of the model
in the spirit of ZR has also been studied by allowing for
3-site interactions in the Hamiltonian. Even though the
resulting ‘bond proximity model’ features a single super-
conducting transition temperature the original model with
fine tuned two interactions gives better fit to experimental
T dependence of the specific heat.
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2P03B 106 18, the Royal Society Joint Project, the NATO Col-
laborative Linkage Grant 979446, and the INTAS grant No.01-
654. We are grateful to Prof. Y. Maeno for providing us with
the experimental specific heat data reproduced in Figures 4
and 10.
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