Energy harvesting by two magnetopiezoelastic oscillators with mistuning
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We examine an energy harvesting system of two magnetopiezoelastic oscillators coupled by electric circuit
and driven by harmonic excitation. We focus on the effects of synchronization and escape from a single
potential well. In the system with relative mistuning in the stiffness of the harvesting oscillators, we show
the dependence of the voltage output for different excitation frequencies.
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I. INTRODUCTION load resistor, R

Ambient energy harvesting by autonomous electro-
mechanical systems is an important source of energy for
small electronic devices and to recharge batteries or en-
able remote operation’?. Many of the proposed devices
use the piezoelectric and electrostatic effects as the trans-
duction method®®. These devices are usually imple-
mented as patches on cantilever beams and designed to F(l‘
operate at resonance conditions. The design of an energy
harvesting device must be tailored to the ambient energy
available. For a single frequency excitation the resonant
harvesting device is optimum, provided it is tuned to the
excitation frequency™®.

To optimize the harvesting system for harmonic exci-
tation, the harvester is designed with a natural frequency
to match the excitation frequency®” For harmonic exci- (a) Magnets Magnets
tation where the frequency varies, or for broadband exci-
tation, the bandwidth of the device has to be extended.
Nana and Woafo? suggested the use of an array of two

Piezoceramic
patches

or more harvesters to increase the power delivered into 0.4 [\
the load. Shahruz!'® analyzed a set of parallel single de-
gree of freedom harvesters tuned at slightly different res- 0.2}
onant frequencies, whereas Erturk et al.'' considered a —
harvester as a serial set of two beams connected to each \?‘& 0.0
other to form an L-shape. Ferrari et al.'? investigated a >_ 0.2
piezoelectric multifrequency energy converter for power X
harvesting in autonomous microsystems. Ramlan et al.!3 >H_O 4] V.
considered a harvester made of two oblique springs and ’ !
analyzed the potential benefits of the hardening effects -0.61 V.
of the spring on the output energy. 2
More recently Kim et al.'* introduced the idea of as- -0.8L - . . - -
sociation of two piezoelectric harvesters to produce more (b) -15-10 -05 00 05 10 1.5
efficient electric power generation. Their model consisted Xy

of a proof mass, two cantilever piezoelectric beams de-

livering the electric signal into an electrical load. They

showed through experimental analysis that a two.degree FIG. 1. (a) Schematic diagram of the harvester system. (b)

of freedom energy harvester has two peaks at different  p_iontials of restore forces Vi(z) = —2? + 2*/2 and Va(y) =
a(—y? +4*/2) (o = 1.1) against displacements z and y for
the corresponding mechanical oscillators (Eq. (1)).
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comparison with the conventional single degree of free-
dom piezoelectric harvester. As suggested by Kim et
al.'*, connecting energy sources do not necessarily re-
sult in an increase in the power generated. Therefore a
rigorous mathematical analysis has to be performed to
analyze the synchronization condition of the harvesters.

The above discussion highlights the current require-
ment for energy harvesting solutions from broadband
vibration. Nonlinear dynamic systems have shown po-
tential to deliver novel broadband harvesting solutions.
However a full understanding of the nonlinear dynam-
ics of these systems is required. This letter considers a
candidate energy harvesting solution based on two mag-
netopiezoelastic beams delivering power into an electrical
circuit. A novel analysis is provided for the mistuning in
the stiffness of the harvesting oscillators, which is vital
to provide a broadband response but significantly com-
plicates the resulting analysis.

Il. THE MODEL AND SIMULATION RESULTS

A schematic picture of the parallel coupled harvesters
is shown in Fig. la. The mathematical model may be
written as the following dimensionless equations:

1
T+ 2(x — 5:10(1 —2%) —xv = F(t),

.. o1

i+20) = 5oyl —y?) —xv = F(1), (1)
and

U+ v+ ki + Ky =0, (2)

where x and y are the dimensionless transverse displace-
ments of the beam tips, v is the dimensionless voltage
across the load resistor, x is the dimensionless piezoelec-
tric coupling term in the mechanical equation, x is the
dimensionless piezoelectric coupling term in the electri-
cal equation, A « 1/RCp is the reciprocal of the dimen-
sionless time constant of the electrical circuit, R is the
load resistance, and Cp = Cpy + Cps is the capacitance
of the piezoelectric material. Finally, o is the stiffness
mistuning parameter which should be considered in any
realistic system, and F(t) is the harmonic excitation of
the following form

F(t) = Fysin(wt). (3)

The double well potentials of the proposed mechanical
oscillators (Fig. la, Eq. (1)) are shown in Fig. 1b.

Using the above equations (Egs. 1-3) we performed
simulations of the dynamical system. The system pa-
rameters used in the calculations were chosen to fit a
realistic experiment”:

Y = 0.05,
¢ =0.01,

k= 0.5,
Fy=0.2,

A =0.01, (4)
a=1.1.
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FIG. 2. (a) Output power in terms of mean squared voltage
< v? > versus excitation frequency w; (b) relative difference
in the oscillator displacements  — y in terms standard devi-
ation o(z — y) versus excitation frequency w. In the simula-
tions the frequency was changed quasi-statically (the system
parameters are given in Eq. (4)).
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FIG. 3. The average values of z and y displacements: <
x > (a), <y > (b) versus excitation frequency w, obtained
simultaneously with results in Fig. 2.

FIG. 4. Simultaneously estimated bifurcation diagrams for x
and y versus the excitation frequency w, which was changed
quasi-statically (the system parameters as in Fig. 2).

The results of the output power as well as the appear-
ance of synchronization are illustrated in Fig. 2. As ex-
pected the resonance curve mirrors the mechanical hard-
ening Duffing type nonlinearity and the peak frequency
is located at about w ~ 1.0 (Fig. 2a). Interestingly, af-
ter passing through the maximum response the system
switches from the resonant to the non-resonant solution.
By examining the standard deviation of oscillator’s rela-
tive displacement o(z —y) we observe that the mistuning
parameter o = 1.1 breaks the synchronization effect (Fig.
2b). Interestingly, synchronization (o(x — y) = 0) is ful-
filled for w €[0.60, 0.95] and [1.55, 1.60], and the resulting
power generated is low. However at frequency giving the



peak power o(x — y) ~ 1.6.

To investigate the above solutions of Egs. (1-3) further,
Fig. 3 shows the simultaneously estimated arithmetic av-
erage values of < x > and < y >, calculated from the
stationary parts of corresponding time series z(t) and
y(t). By observing these parameters one can distinguish
the symmetric (usually double-well) and non-symmetric
(usually single-well) solutions. Apart from some synchro-
nized motions where both averages (< x > and < y >)
have fairly close values, there are also regions with com-
pletely different averages. It is evident that mistuning
(see av in Eq. 1) can lead to complicated mixed solutions
where one of the oscillators exhibits single well vibrations
while the other exhibits double-well vibrations.

The effect of switching between different possible solu-
tions, from single to double well solutions and vice versa,
can be also identified in Fig. 4, where we present the
bifurcation diagrams for the mistuned oscillators.

For more detailed studies we have concentrated on
the three cases defined by different excitation frequency
w = 0.75, 1.00, 1.70. The corresponding phase portraits,
Poincare points, and time series are illustrated in Figs.
5-7, respectively. The initial conditions were chosen as
[x,2,y,y,v] =[0.01,0,0.01,0,0]) for each case.
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FIG. 5. Phase portraits (lines) with Poincare points (black
points) projected into planes (z, %) (a) and (y,¥) (c), and time
series of z(t) (b) and y(t) (d) for w = 0.7.

Note that according to Fig. 2b the solution for w =
0.75 is fairly well synchronized. The topology of phase
portraits and Poincare maps (Figs. 5a,c) and the simul-
taneous time series (Figs. 5b,d) confirm that conclusion.
Interestingly the system response period corresponds to
four excitation periods which is presumably due to the
electrical coupling of mechanical parts (Egs. 1-2) and the
effect of mistuning (Fig. 1b).

The solution for w = 1.00 is obviously non-
synchronized (see Fig. 2b). Note that Figs. 6¢,d clearly
show that the discussed solution is chaotic. Interestingly,
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FIG. 6. Phase portraits (lines) with Poincare points (black
points) projected into planes (z, %) (a) and (y,9) (c), and time
series of z(t) (b) and y(¢) (d) for w = 1.
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FIG. 7. Phase portraits (lines) with Poincare points (black
points) projected into planes (z, %) (a) and (y,9) (c), and time
series of z(t) (b) and y(t) (d) for w = 1.75.

the chaotic solution seems to be induced by the second
oscillator (with the coordinate y) while the first oscilla-
tor (with the coordinate x) shows a more regular response
(Figs. 4a,b). In the plane (z,%), the attractor (Fig. 4a)
resembles a smeared point of a regular solution in the
presence of noise-like disturbances. These disturbances
are created by the chaotically changing coordinate y cou-
pled to the first oscillator through the linear electrical
circuit coupling (Eq. 2).

Finally, the solution for w = 1.70 shows interesting
phenomena and the corresponding phase portraits show
a different topology. The first mechanical beam structure



oscillates in a single potential well (Figs. 7a,b) while
the second beam structure exhibits well developed os-
cillations (Figs. 7c,d) crossing the potential well Va(y)
(Fig. 1b). This phenomenon is related to the nonuni-
form distribution of the system energy. The above so-
lutions confirm qualitatively the appearance of different
averages < x > and < y > shown in Fig. 3 in the region
of w € [1.75,1.90], as well as the differences in the bi-
furcation diagram. However one should note that differ-
ent initial conditions may lead to different solutions and
consequently change the vibrational energy concentration
in this nonlinear system. From the Poincare points one
can conclude that the response frequency corresponds to
thirty excitation periods.

I1l.  CONCLUSIONS

In summary, we have investigated the dynamical re-
sponse of two magnetopiezoelastic harvesters with mis-
tuned stiffness connected in a parallel way via an electri-
cal circuit. The total output power versus the excitation
frequency showed the typical resonance curve, however
due to mistuning the harvesters worked mostly in the
unsynchronized regime. In the vicinity of the resonance
peak we found a chaotic solution which was driven by
one of the oscillators.

Note that in this paper we used only one set of initial
conditions (Fig. 5-7) and w was changed quasi-statically
(to get the results in Figs. 2-4). However, to explain
the problem of multiple solutions in nonlinear systems
(Egs. 1-3) their synchronization, and bifurcations one
has to perform more extended studies on initial condi-
tions and to estimate basins of attraction for the given
excitation frequency w. For instance, two degrees of free-
dom dynamical systems with friction have been exten-
sively studied by Awrejcewicz and Olejnik!®:16.

It is interesting that the appearance of different so-
lutions directly affect the energy harvesting as they im-
plies various distributions of the vibrational energy. Fur-

thermore, it would be important to note to test the
robustness of particular solutions against weak noise
conditions®!7.
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