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ABSTRACT
The recurrence analysis method is used in the mechanical diagnosis of a gear transmission system using time

domain data. The recurrence is a natural behavior of a periodic motion system, which tells the state of the system,
after running some time, will approach to a certain past state. In this paper, some statistical parameters of recurrence
qualification analysis are extensively evaluated for the use of mechanical diagnosis, based on fairly short accelera-
tion time series; recurrence results are compared with those obtained from Fourier analysis, and the identification
procedures for the failure gear transmission by recurrences is also presented. It is found that, only using fairly short
time series, some statistical parameters in quantificationrecurrence analysis can give clear-cut distinction between
health- and damage-state.

∗Address all correspondence for other issues to this author.



Nomenclature
xi,x j Vector representation of the system states in discrete timei, j.
ε Threshold value.
RR, LAM, DET , L, T T
V ENT R, LENT R Parameters defined in the Recurrence Qualification Analysis.
y Average value of parametery.
σy Standard deviation of parametery.
Kurty Kurtosis of parametery.
Ri, j Recurrence matrix.
P(l), P(v) Histograms of the line diagonal and vertical lengths (l andv, respectively).
p(l), p(v) Normalized probability distributions of the line diagonaland vertical lengths (l andv, respectively).
PS Power spectrum.
Θ(x) Heaviside step function.
H1,H2 Signals corresponding to healthy gears measured by sensor No. 1 and 2, respectively.
D1,D2 Signals corresponding to damaged gears measured by sensor No. 1 and 2, respectively.
n Number which indicate the rotation interval.

1 Introduction
Gear transmission systems are widely used in real life because of their reliability and possibility of long time operation

[1–5]. Due to backlash and time-varying mesh stiffness theyshow complex nonlinear response [6] such as chaotic vibrations
[7]. Additionally, transmission errors can occur due to thewear phenomena and disturb the efficient work [8–10]. Operational
safety requires to detect those defects before admitting the transmission system for a longer operation. The goal of thepresent
note is to compare dynamics of the faulty transmission to thehealthy one using nonlinear time series method of recurrence
plots. For testing purposes, we used a single-stage transmission gears pair with angular teeth mounted on an industrialtest
stand [11]. This kind of gears is widely used in aircraft industry, e.g. to transmit power into the tail rotor in helicopters.

In the present paper, instead of using a standard frequency analysis [12], we calculate recurrence indicators from fairly
short experimental time series of acceleration measured indifferent stages of the dynamical experiment. Finally, recurrence
indicators are used to assess the gear usability and/or degradation. We assume that the faults occurred in the system introduce
strongly nonlinear phenomena like friction and/or backlash that can influence the stability of the whole system. To search
and identify such disturbing effects in the system dynamical response, we used a recurrence quantification analysis (RQA)
which gives reliable indicators for system technical conditions [13–15].

2 Recurrence quantification analysis
Recurrence is a natural behaviour of the periodic motion when after some time the actual state of the system is close to a

certain past state. Letxi denote a state of a dynamical system at discrete time. Similarly, let x j denote a different state of the
examined system. Consequently, a recurrence phenomenon implies those states to be close to each other (after some time),
what can be written as:

|xi −x j| ≤ ε, for i 6= j. (1)

This fact can be described in logical values (0 or 1) using therecurrence matrix:

Ri, j(ε) = Θ(ε−||xi −x j||), for i, j = 1, ..,n, (2)

where||.|| is the Euclidean measure, andΘ(x) is the Heaviside step function.
The results of the recurrence function (Eq. 2) that acts on the trajectory of the lengthn can be represented as an× n

matrix made of zeros and ones where rows and columns are marked as a discrete time. Its graphical representation of that
matrix (coloured points(i, j) for Ri, j(ε) = 1, and empty places(i, j) for Ri, j(ε) = 0) is called a Recurrence Plot (RP) [16,17].
Note that every recurrence plot includes a single point. More recurrences can be reflected into RP as vertical, horizontal
lines or singular points. The points in RP can also form some other patterns possessing elements of vertical, horizontallines.
Thus, one can distinguish different kinds of motion just from recurrence plot topology.

However, a more specific investigation based on the statistics of points and lines forming the plot can be made (RQA
- Recurrence Quantification Analysis) [17–20]. The RQA includes a few measures based on horizontal and vertical line
patterns in terms of the statistical properties of line lengths and their distributions. Note, the diagonal lines represent the



periodic motion, while the isolated point reports a single recurrence that could appear by incidental passing through the same
state in the phase space.

Recurrence rateRR:

RR =
1
n2

n

∑
i, j=1

Ri, j(ε), (3)

is the ratio of the recurrence points to all possible points.
DeterminismDET :

DET =
∑n

l=lmin
lP(l)

∑n
l=1 lP(l)

(4)

shows the contribution of points forming diagonal lines.P(l) is a histogram of diagonal lines of lengthl.
LaminarityLAM:

LAM =
∑n

v=vmin
vP(v)

∑n
v=1 vP(v)

(5)

shows the contribution of points forming vertical lines.P(v) is a histogram of vertical lines of lengthv. DET andLAM show
how many recurrence points are included in various diagonaland vertical lines. The first one (DET) used to characterize
how periodic is the system dynamical response while the second (LAM) identifies small (laminar) changes in recurrences
by calculating the ratio of small deviations in the recurrences to all recurence points. Interestingly, small deviations in
recurrences are represented by vertical lines in RP.

The average length of diagonal linesL:

L =
∑n

l=lmin
lP(l)

∑n
l=lmin

P(l)
(6)

can reflect the time correlation of time series, which is related to the average time of a periodic motion.
The average length of vertical lines called trapping timeT T :

T T =
∑n

v=vmin
vP(v)

∑n
v=vmin

P(v)
(7)

is a similar indicator toL but defined for vertical lines, which can tell about the characteristic time of a laminar motion. The
Shannon entropy for diagonal linesLentr:

LENT R = −
n

∑
l=lmin

p(l) ln p(l), (8)

wherep(l) is probability of finding a diagonal line of lengthl.
The Shannon entropy for vertical linesVentr:

V ENT R = −
n

∑
v=vmin

p(v) ln p(v), (9)

wherep(v) is probability of finding a vertical line of lengthv. Note, the parametersLENT R andV ENT are particularly
sensitive to noise.

The maximum length of diagonal and vertical lines isLMAX andV MAX , respectively.
These quantities, or more precisely changes of their valuesin the system conditions, illustrate the dynamics of the

underlying system. E.g.DET in a periodic system (long diagonal lines and few single points) takes a higher value than in a
stochastic system (only single points). Note that the correct results of the RQA depend on proper choice of the embedding
parameters (embedding dimension and embedding time delay). Furthermore, a subspace of all measured coordinates can be
used.



3 The experimental set-up and results
We have tested single-stage transmission gears with angular teeth. The scheme of the gears and the location of the

acceleration sensors are shown in Fig. 1.
The gears were dismounted and examined carefully after being in operation for a long time. It appeared that the gear

system had been damaged, therefore the transmission systemwas replaced by a new (healthy) one and run again. We have
recorded the vibration of acceleration in three directions(x,y,z) with a sampling frequency of 40 kHz for both damaged and
healthy systems.

The damage of the transmission occurred after 3 hours and 15 minutes of the gear system work. The stop signal was due
to the presence of a chips sensor. There has been a blurring effect due to the incorrect assembly of gears. The acceleration
data was recorded regularly since the beginning of transmission to the occurrence of the damage.

More detailed analysis of the dismounted gears provided evidence that the lateral surface of the teeth had been damaged.
The transmission system was replaced by the new (healthy) one and run again. The pinion had 19 teeth and was rotating with
speed of 6196 rpm, and the driven wheel had 42 teeth. The data consists of 160 revolutions of the pinion, which correspond
to 61960 points of the system evolution and a run time of 1.549seconds. For the purpose of our analysis we divided the
whole period into 10 rotation intervals, each of 16 revolutions.

In this project we compare the system response records obtained from two piezoelectric triaxial sensors. To obtain more
information, than from the Fourier analysis, we apply the method of recurrence plots. Initial results related to this gear
system have been recently reported by Jedliński at al. [11] who used frequency domain analysis. He filtered the measured
signal to find differences between the healthy and faulty transmission gears. In the present approach, instead of using a
filtering algorithm, we propose to use the simultaneously recorded data from 3 directions. The obtained data form vectors of
the phase space.

Thus, we focus on comparison of the two different time seriesfor faulty and healthy gears, recorded with a single 3d
sensor ( No. 1 in Fig. 1). As expected, the sensor No. 2 (Fig. 1)gave similar results (see Tab. 1). The corresponding
time series for the healthy and damaged gears are presented in Fig. 2. Note that the wider distribution of measured points
is clearly visible for the faulty gear pair (Fig. 2b). In Tab.1 one can compare Basic statistical parameters including mean
values, standard deviation and kurtosis used for all 3 directions, i.e.x, y, andz are compared in Tab. 1.

Comparing the statistics obtained, higher mean values for acceleration of healthy gears iny andz direction (H1) can
be noted. On the other hand, the standard deviation of acceleration in the same direction is higher for the signal D1 of the
damaged gears. The time series obtained from the second sensor behave in a similar way (almost all statistic parameters
take higher values for signal D2). Interestingly, kurtosisis clearly larger for the damaged systems (Kurt& 3, i = x,y,z) as
compared to the healthy ones (Kurti . 3 wherei = x,y,z). All estimated kurtosis values are relatively close to that of the
Gaussian distribution (Kurt= 3). However, their small systematic variation indicates a platykurtic distribution of measured
points ( flatter than the Gaussian) for the damaged system, while the healthy system shows a leptokurtic density (more peaky
distribution). Note that the Gaussian process can be associated with the presence of random external force and/or torque
disturbances. The change in kurtosis indicates the additional correlated effect of internal forces in the gear system.The large
increase can detect intermittency [21].

To make further progress with the recurrence analysis the corresponding time series have been normalized properly to
their standard deviations.

4 The RQA results and discussion
This section reports the results of RQA for time series describing magnitudes of gears system acceleration with damaged

and healthy transmission gears. In the search for differences between the considered systems we performed the RQA analysis
for 10 consecutive rotation intervals. For each period, recurrence quantifiers defined in the previous section with the assumed
critical distance (threshold value)ε = 0.5 and minimal length of a diagonal and vertical line equal to 2were calculated.
Instead of the embedding space estimation [22, 23] we used a 3dimensional space spanned on the 3 axial acceleration
signals (x,y,z).

Using the experimental data, RQA measures were calculated to distinguish between healthy and damaged gears (Figs.
3-13).RR values for different revolutions and two sensors are compared in Fig. 3.

As depicted in Fig. 3,RR takes similar values. Careful inspection shows that a slightly wider range ofRR (RR ∈
[0.0094,0.0170]) and simultaneously the mean value are related to the healthy gears (seeRR ∈ [0.0104,0.0126] for the
damaged gears). Consequently, our main conclusion based onFig. 3 is that the recurrences occur at the similar level, but
their distribution can be different.

The examples of the recurrence plots for one chosen rotationinterval (No. 8) are given in Fig. 4. Note that,RR is the
same here (see Fig. 3a) for sensor No. 1 and fairly similar forsensor No. 2 (see Fig. 3b). The vertical scales are different
in Fig. 3a and b. This coincidence (Fig. 3a) makes plausible the comparison of the statistics of the diagonal and vertical
lines for both gear systems, i.e. healthy and damaged. Namely, the sameRR implies the same number of recurrence points



for different dynamical responses reflected in different patterns in Fig. 4. TheRR matrix for the damaged gear signal looks
more reddish because of the resolution (with the same numberof recurrence points).

Interestingly, the transition from a healthy to a damaged system is associated with different vertical line structures.
The apparent evolution from a more like checkerboard and larger square patterns (Fig. 4b) into a collection of vertical and
horizontal short lines (Fig. 4a) resembles the intermittency transition discussed by Klimaszewska andŻebrowski [24]. The
larger difference ofT T in the two examined cases (healthy and damaged) should also reflect the effect.

Fig. 5 shows the selected RQA parameters (RR, DET , LAM, LENT R, V ENT R, andT T ) versus the threshold valueε
for case No. 8 of the same healthy and damaged gear signals obtained from sensor No. 1 (see Fig. 3a). There are visible
corresponding lines splitting in the region of smallε for DET , LAM, andV ENT R. Simultaneously,RR lines are very close
(Fig. 5a).T T lines (Fig. 5f) are also split but for fairly largerε, while LENT R lines (Fig. 5d) are fairly close in the whole
region, making a noticeable difference in order of altitudes LENT R(healty) > LENT R(damaged) → LENT R(damaged) <

LENT R(healty) for a large enoughε (ε ≈ 4.1).
The corresponding recurence plots for RQA parameters alongthe full time history consisting of 10 rotation intervals.

can be found in the next figures (Figs. 6–12). The threshold value ε was fixed as in Fig. 3 (ε = 0.5). Note that the equalRR
values determine equal number of recurrence points for healthy and damaged gears and make the RQA measures possible to
compare.

DET versus consecutive revolution is shown in Fig. 6. Obviously, theDET parameter corresponds to the predictability
of the process. It is higher for both H1 and H2 but a more significant change can be noted for D1 and H1 (H1 almost twice
higher than D1). Another indicator, corresponds to regularity of the process is i.e.LMAX (Fig. 7).

Thus,LMAX varies for the healthy gears (H1 and H2) whereas it is flatter for the damaged ones (D1 and D2) but it
takes twice higher values, especially for data recorded by the first sensor. On the other hand, those values are quite small as
compared to the length of the whole data (6196 points). That might indicate the influence of noise or non periodic behaviour.

Mean length of the diagonal line is shown in Fig. 8. Comparison of theL values shows differences for the healthy gear
for D1 and H1 (Fig. 8a - sensor No.1). Clearly, indicators calculated for the second sensor (Fig. 8b - sensor No. 2) are
different (D2 and H2). Those lengths are quite small, which is typical for non periodic or/and intermittent dynamics [19,25].

Clear distinction of signals for each sensors can be also found in the values of entropy of the diagonal lines (Fig. 9).
Interestingly, the results are different again for sensor No. 1 and 2 like the results ofL in Fig. 9.

The above inconsistency needs to be clarified. The expected decrease ofL and even more evidentlyLENT R in the
damaged systems is related to the ordering effect of the increasing nonlinearity (as noted for the sensor No. 1 – Figs. 8a,9a).
However, this explanation is only valid in the limit of smallε which is not reached. This means that, in our systemε = 0.5 is
not small. FurthermoreRR, is fluctuating more in sensor No. 2, which can also cause difficulty estimating other parameters.

More clues about the stability of the power transmission dynamical process can be found in the values of indicators
based on statistics of the vertical lines (Figs. 10–12). Forinstance, Fig. 10 specifies the vertical line distribution.The
appearance of vertical lines (Fig. 4) gives some information about fairly small variations of recurrence intervals whereas
isolated points indicate the large changes. By means ofLAM one can see the clear distinction between healthy and damaged
system. Thus,LAM for a damaged system is smaller which is again the ordering effect of the defect caused by increased
nonlinearity.

The following parametersV MAX (Fig. 11) andT T are also larger for a damaged system. The effect is more visible for
sensor No. 1 (Fig. 11a and 12a). Interestingly, for sensor No. 2 (Fig. 11b and 12b) the tendency is opposite, in particular
for rotation interval No. 7 as the percentage of recurrence of healthy system was smaller for the damaged gear system. This
implies the role ofRR parameter variation which is more significant for sensor No.2.

Finally,V ENT R versus consecutive rotation intervals, plotted in Fig. 13,behaves in a similar way (as compared to that
of V MAX andT T – Figs. 11 and 12) with the higher values for the healthy system. The same is for rotation interval No. 7
(for sensor No. 2 – Fig. 12b could be related to disturbances in RR (Fig. 3b).

To exclude various fluctuations, we calculated the averagesof all examined QRA parameters (for 10 rotation intervals)
which are given in Tab. 2.

There is a clear difference betweenDET , LMAX , LAM, andV MAX which confirms the previous particular revolution
analysis. This means that, the averaging canceled some interval-to-interval fluctuations.

Our results show clearly that the RQA statistics can be used to distinguish between a healthy system of gears and a
damaged gear system. The analysis of results should begin from the estimation ofRR which is an important parameter and
should be used to normalize the results obtained and consequently to compare different time series by the proper choice of
ε (in our caseε was selected better for sensor No. 1 than sensor No. 2). Afterwards, any other RQA parameters can be
estimated. Most significant differences can be found in the values ofDET andLAM which were always higher for healthy
gears.

In fact the common procedure in an experimental data analysis is based on frequency domain. Comparing a hight
frequency limit one can see power spectrum (Fig. 14) for timeseries of sensor No. 1 and the rotation interval No. 8 in all 3
directions (x, y, andz).



Based on power spectra fory andz direction one can see peaks with higher amplitude and frequency for damaged gear
can be noted. The corresponding values of peaks are much higher than the shaft speed (103 Hz).

That indicates harmonics at high frequency in the damaged but not healthy gear system. Obviously, one can see there is
a frequency shift for higher frequencies of the damaged system response appearing in all directions (Figs 14a–c). Simulta-
neously, power spectra for the gear vibrations are within a narrower range in the presence of defects. This effect is the most
transparent inz direction (Fig. 14c). The shift of the peaks and the corresponding frequency band shrinking are the effects
which accompany defects. In the recurrence approach we can notice the ordering of oscillations which slightly change from
interval to interval.

5 Summary and conclusions
In summary, we have applied the nonlinear recurrence based method analysis to experimental data taken from the

aviation power transmission. Analysis of experimental data is difficult, mainly due to influence of additional noise that
can distort the results [26]. To distinguish a healthy gear transmission from a damaged one, the recurrence indicators are
used. Applying the RQA allows for detecting systematic differences in the values ofDET andLAM, assumed as quantifiers.
Interestingly, the effect is also noted in Kurtosis (Tab. 1). We have also noticed that results may slightly vary with changes
of the parameters values (L, LMAX , LENT R, T T , V MAX , V ENT R) due to a sensor selected. Such a choice implies more
implies more careful fixing the value ofε in order to minimize the variations ofRR. The averaging procedure applied to the
RQA parameters over 10 rotation intervals has helped to cancel their fluctuations (Tab. 2).

Additionally, the examined data indicate stationary vibrations as there are no jumps in recurrences ratios or statistical
indicators.

To conclude, the new method of monitoring a gear system is recommended for an industrial environment. The advantage
of the recurrence approach is that only two parametersRR andDET identifying a defect instead of observing the whole
frequency spectrum of the Fourier analysis in each interval. However, more systematic experiments with different threshold
valuesε, as well as various kinds of gear defects should be done before the implementation of this method to the industry.
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Table 1. Statistic properties of time series. The signal D1 stands for acceleration of the faulty gear recorded by the first sensor, H1 -

acceleration of the healthy gear; the signals D2 and H2 - obtained from the second sensor.

Signal x̄ ȳ z̄ σx σy σz Kurtx Kurty Kurtz

[m/s2] [m/s2] [m/s2] [m/s2] [m/s2] [m/s2]

D1 0.119 0.458 0.547 108.25 107.30 99.82 2.929 2.575 2.879

H1 0.111 0.139 0.198 113.54 201.88 210.91 3.109 3.061 3.164

D2 0.557 0.153 0.157 138.17 127.17 108.36 3.032 2.954 2.913

H2 0.217 0.192 0.464 197.66 161.55 214.48 3.214 3.195 3.162



Table 2. Average values of RQA for all presented revolutions Nos. 1-10 with ε = 0.5. The signal D1 stands for acceleration of the faulty

gear recorded by the first sensor, H1 - acceleration of the healthy gear; the signals D2 and H2 - obtained from the second sensor.

Signal RR DET LMAX L LENT R LAM V MAX T T V ENT R

D1 0.029 0.345 22.4 2.4 0.853 0.528 10.9 2.4 0.859

H1 0.032 0.571 44.9 2.6 1.076 0.742 17.0 2.8 1.280

D2 0.033 0.371 28.0 2.5 0.958 0.553 13.9 2.5 0.984

H2 0.035 0.482 39.4 2.5 0.929 0.675 16.7 2.6 1.133



(a)

(b)
Fig. 1. (a) Location of the sensors on the shaft where 1 and 2 stand for first and second sensor, respectively [11]. (b) 3D schematic view of

a gear system.
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Fig. 2. Acceleration time series describing acceleration in x direction of system with a pair of damaged (1D - (a)) and healthy (1H - (b))

gears, obtained by the sensor No. 1
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calculated with ε = 0.5.



Fig. 4. Recurrence plots (with ε = 0.5) for the rotation interval No. 8 for the signals obtained from the sensor No. 1 (see Fig. 3a), and

different gear systems: healthy (a) and damaged (b) ones, respectively. The embedding space consist of x, y, and z acceleration components.
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Fig. 5. (color online) Selected RQA parameters versus ε for the case No. 8 of the signals obtained from the sensor No. 1 (see Fig. 3a), and

different gear systems: healthy (green dashed lines) and damaged (red full lines), respectively. The embedding space consists of x, y, and z
acceleration components.
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Fig. 6. (color online) Determinism DET for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears

calculated with ε = 0.5.
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Fig. 7. (color online) LMAX for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with ε = 0.5.
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Fig. 8. (color online) L for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated with

ε = 0.5.



 0.65

 0.75

 0.85

 1  2  3  4  5  6  7  8  9  10

LE
N

T
R

Revolutions x 16
(a)

D1

H1

 0.67

 0.69

 0.71

 0.73

 0.75

 1  2  3  4  5  6  7  8  9  10

LE
N

T
R

Revolutions x 16
(b)

D2

H2

Fig. 9. (color online) LENT R for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with ε = 0.5.
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Fig. 10. (color online) Laminarity LAM for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears

calculated with ε = 0.5.
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Fig. 11. (color online) V MAX for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with ε = 0.5.



 2.25

 2.35

 2.45

 2.55

 1  2  3  4  5  6  7  8  9  10

T
T

Revolutions x 16
(a)

D1

H1

 2.28

 2.32

 2.36

 2.4

 2.44

 1  2  3  4  5  6  7  8  9  10

T
T

Revolutions x 16
(b)

D2

H2

Fig. 12. (color online) Trapping time T T for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears

calculated with ε = 0.5.
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Fig. 13. (color online) V ENT R for healthy; H1 (a), H2 (b) (green dashed lines) and damaged; D1 (a), D2 (b) (red full lines) gears calculated

with ε = 0.5.
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Fig. 14. (color online) Power spectra for the revolution No. 8 estimated for x acceleration (a), y acceleration (b), z acceleration (c) for the

healthy (green) and damaged (red) transmission gears. Note that the damaged system spectra have more localized and larger frequencies.


