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Abstract: We have analyzed the variations in cutting force during milling of a fiber-

reinforced composite material. In particular, we have investigated the multiscale 

dynamics of the cutting force measured at different spindle speeds using multifractals  

and wavelets. The multifractal analysis revealed the changes in complexity with varying 

spindle speeds. The wavelet analysis identified the coexistence of important periodicities 

related to the natural frequency of the system and its multiple harmonics. Their nonlinear 

superposition leads to the specific intermittent behavior. The workpiece used in the 

experiment was prepared from an epoxy-polymer matrix composite reinforced by carbon 

fibers. 
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1. Introduction  
 

 Milling is one of the most common machining operations performed in the 

manufacturing industry. It is often used as a process for material removal, edge finishing 
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and other functions. The cutting force in a milling operation evolves on multiple 

timescales and exhibits complex dynamics. Over the past few years, new technological 

development in milling provided a reliable high-speed cutting procedure. However, in 

spite of recent progress in the understanding of the nonlinear mechanisms leading to 

vibrations [1-5], the strategies for controlling conditions for stable machining are not 

clearly understood.  Consequently, it would of great interest to gain a deeper 

understanding of the complex dynamics of the milling process.  Some progress has been 

made in this direction using the adaptive control concept, based on identification of 

relatively short time series [6-7].   

 Fiber-reinforced composites, in view of their high specific strength and stiffness, 

are now widely used in various industrial applications. However, due to material 

discontinuity, non-homogeneity and anisotropy, machining of composites is more 

challenging than machining of simple metals and their alloys. Because of various 

possible damage mechanisms such as fiber pullout, fiber fragmentation and delamination,  

matrix burning, and matrix cracking, poor surface quality can occur [8-9]. Workpiece–

tool vibrations appearing during machining increase considerably the temperature of 

contact, and this effect cannot be minimized by cooling fluid as the material can easily 

absorb it. Recently, Rusinek [10] and  Litak et al. [11] investigated the cutting dynamics 

in milling of a fiber-reinforced composite material using nonlinear time series analysis 

techniques. In this study, we analyze the dynamics of the cutting force variations in 

milling of fiber-reinforced composites using wavelets and multifractals. 

 The present paper is composed of five sections. Following this section which 

provides an introduction to the main topics of the paper, we describe the experimental set 

up and the measurement procedure in section 2. Section 3 is devoted to the multifractal 
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approach, whereas Section 4 presents  the wavelet analysis. Finally in section 5, a few 

concluding remarks are given.   

 

2. Experimental Set Up and Force Measurement   

 The cutting force measurements were performed using the experimental set up 

shown schematically in Figure 1a. The set up (Fig. 1b) consists of a CNC milling 

machine, a piezoelectric dynamometer, a charge amplifier, a sample-and-hold unit, an 

analog-to-digital (A/D) converter, and a computer. The force signals are transmitted from 

the dynamometer to the A/D converter and stored in the computer. Machining of epoxy-

polymer matrix composite reinforced by carbon fibers (EPMC) was performed at various 

spindle speeds ranging from 2000 rpm to 8000 rpm, with the feed rate fixed at 520 

mm/min. with a depth of cut equal to 0.5 mm. The mill itself is made of diamond-coated 

steel with a diameter of 12 mm. The largest force component Fx (oriented in the direction 

of machining) was measured. The time series of this cutting force at five different speeds 

ranging from 2000 to 8000 rpm are presented in Figure 2. The total time of recording is 5 

seconds and the sampling frequency is 4000 Hz. At a first glance, one can observe that 

the amplitude of oscillations is initially growing with increasing speed to reach the 

highest value at N = 6500 rpm; beyond this speed, the amplitude decreases as it 

approaches the speed N = 8000 rpm.  

3.  Multifractal Analysis 

 A characteristic feature of the complex dynamics of the milling process is that 

they occur on multiple time scales. A convenient way to describe the dynamics of such 

multiscale processes is to use a multifractal formalism. The multifractal approach is 

based on the spectrum of Hölder exponents which can be used as a measure of 

complexity [12-14]. A fractal (or a monofractal) process is self-similar in the sense that 
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its dynamics can be described in terms of a single power-law scaling exponent such as 

the Hurst exponent [15], and may be considered a homogeneous process. Accordingly, its 

complexity can be described by means of a single fractal dimension. In contrast, a 

multifractal process is heterogeneous and evolves on different time scales with different 

scaling exponents. It is therefore necessary to use several scaling exponents or fractal 

dimensions to describe the multiscale features of a multifractal process. This can be done 

by calculating the singularity spectrum in terms of the so-called Hölder exponent. For an 

infinitely long monofractal process, the singularity spectrum reduces to a single point. On 

the other hand, if the singularity spectrum does not reduce to a single point, it is 

indicative of multifractal behavior. A multifractal process may be considered to be 

locally self-similar and the Hölder exponent may be treated as a local Hurst exponent. 

The broadness of the singularity spectrum is a measure of complexity of the multifractal 

process. Multifractal processes are known to occur in a wide variety of applications (see, 

for example, [16-18]).  

 Consider a real-valued function F(t). The Hölder exponent of this function at a 

point 0tt  is defined as follows [13]: 

 


00 |)()(| ttCttPtF n  ,      (1)  

where )(tPn  is a polynomial of degree less than , and C is a constant. Note that for a 

function to be differentiable at the point 0t , the value of α must be 1 at that point. On the 

other hand, if α < 1 at some point 0t , the function will not be differentiable there and α 

will characterize the strength of the singularity at that point. Therefore the Hölder 

exponent of a function is a measure of the smoothness (or lack thereof) of a function at a 

point. The singularity spectrum, f(), is defined as the Hausdorff dimension of a set of 

singularities of strength α. 
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 We use the following two attributes of a multifractal spectrum: (i) the value of the 

Hölder exponent, α = 0 , corresponding to the spectral peak, and (ii) the broadness,  , 

which is the distance between the (extrapolated) points of intersection of the spectral 

curve with the α-axis. The parameter, 0 , represents the most dominant fractal exponent, 

and it reflects the degree of persistence or correlation in a time series. In particular, the 

value 0 = 0 corresponds to Gaussian white noise, 0 = 0.5 to Brownian walk, both of 

which indicate an uncorrelated process. On the other hand, the values of 0 < 0.5, and 0 

> 0.5 indicate anti-persistent and persistent walks, implying positive and negative 

correlations, respectively, between the events in the time series [16-18]. The broadness of 

a singularity spectrum describes the range of possible fractal exponents and thus gives a 

measure of multifractality or complexity of the time series. A large value of broadness 

describes a richer multifractal structure whereas a small value approaches a monofractal 

limit.  

 Using the software provided in [12], we performed a multifractal analysis of the 

milling force (Fx) variations represented by the time series shown in Figure 2. The 

singularity spectra, f(), for all five speeds  are depicted in Fig. 3. From this figure, the 

values of the most probable Hölder exponent, 0 related to the correlation of the time 

series, and the broadness of the singularity spectrum,  related to the degree of 

complexity, were obtained. These values are listed in Tab. 1. Note from this table and 

Fig. 3 the general tendency with changing N. Of course for higher speed we expect less 

correlations which has the main influence on both: 0  and  . For N = 2000 rpm we 

observe the highest 0 = 0.294 and the highest   = 0.804. On the other hand the 

smallest values are observed for N = 8000 rpm: 0  = 0.047 and  = 0.253. Interestingly 

the polynomial drift of the above quantities scaled by the speed is disturbed for N 
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changing from 5000 to 3500 rpm as documented in Figs. 4a and b. Note also that the  

average force value and its standard deviation (Table 1) are not changing monotonically 

with increasing N. In particular, the average value is changing considerably and reaching 

the maximum of Fx = 12.34 N for N = 5000 rpm, whereas the standard deviation is 

changing around 22 N. Notably, the case N = 5000 rpm is accompanied by the local 

increases of both multifractal parameters: correlation 0 and complexity  . The 

increasing force could be related to the specific properties of the machined material as the 

distribution of carbon fibers may influence the resistance of the material. 

 

 

4. Wavelet Analysis 

 
   Wavelets have been used for time series analysis in a wide variety of applications. 

Wavelet analysis provides a spectral-temporal approach to identify the dominant modes 

of variability in a time series and to delineate how these modes vary over time. It is 

particularly useful for analyzing transient and intermittent phenomena. A wavelet-based 

approach has advantages over the more traditional methods such as the Fourier transform 

or the windowed Fourier transform. The Fourier transform is a purely frequency domain 

technique which seeks to determine the periodicities in a signal through spectral peaks, 

but it cannot delineate the time spans over which the periodicities may persist. A 

windowed Fourier transform also known as a short-time Fourier transform (STFT) 

circumvents this limitation by applying the Fourier transform on a short segment of the 

signal using a window of fixed size and then sliding the window in time. The temporal 

variations of the periodicities, if any, can thus be determined.  However, because a fixed-

size window is used in STFT, the frequency resolution as well as the time resolution is 

fixed. As a consequence, for a given signal either the frequency resolution may be poor 
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or the time localization may be less precise, depending on the size of the chosen window.  

In contrast, using variable-size windows, wavelet analysis provides an elegant way of 

adjusting the time and frequency resolutions in an adaptive fashion. A wavelet transform 

uses a window that narrows when focusing on small-scale or high-frequency features of 

the signal, and widens on large-scale or low-frequency features, analogous to a zoom lens 

[19]. Recently we have used wavelet analysis in our studies of pressure fluctuations in 

internal combustion engines [16], and other applications [20-22] including the turning 

process [17].  We present below a brief description of the wavelet analysis methodology 

and then apply it to the cutting force time series shown in Figure 2.  

 A wavelet is a small wave with zero mean and finite energy. Consider a time 

series }{ ix  with i = 1, 2, 3, …, N. The continuous wavelet transform (CWT) of this time 

series with respect to a wavelet )(t is given by the convolution of the time series with a 

scaled and translated version of ).(t  The function )(t is referred to as an analyzing 

wavelet or a mother wavelet. The convolution is expressed by [23] 

 
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Here t is the sampling interval, and an asterisk on   denotes its complex conjugate. The 

symbols s and n are called scale and time index, respectively. The scale parameter 

controls the dilation (s > 1) and contraction (s < 1) of the mother wavelet. The time index, 

n, indicates the location of the wavelet in time; in other words, as n varies, the signal is 

analyzed in the vicinity of this point. The amount of signal energy contained at a specific 

scale s and location n is given by the squared modulus of the CWT, and is referred to as 

the wavelet power spectrum 2|)(| sWn . The wavelet power spectrum (WPS) is a measure 

of the variance at different scales or frequencies. The WPS which depends on both scale 
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and time is represented by a surface. By taking contours of this surface and plotting them 

on a plane, a time-scale representation of the spectrum may be derived. A time-scale 

representation is found to be useful for extracting important features of signals arising in 

many applications. In our analysis we used a complex Morlet wavelet as the mother 

wavelet. A complex Morlet wavelet consists of a plane wave modulated by a Gaussian 

function and is described by [23]. 

204/1 /2

)(




  ee
i

.       (3)   

Here 00 2 f  is the order of the wavelet, with 0f  being the center frequency. The 

value of 0  controls the number of oscillations that is present in the mother wavelet and 

thus influences the frequency and time resolutions of the corresponding wavelet 

transform. A larger value of 0  provides a higher frequency resolution whereas a smaller 

value improves the time resolution. In our computations, we have used a Morlet wavelet 

of order 6 as the mother wavelet. This choice provides a good balance between time and 

frequency localizations. In addition, for this choice, the scale is approximately equal to 

the Fourier period and thus the terms scale and period can be used interchangeably for 

interpreting the results. 

 Using a continuous wavelet transform (CWT), we calculated the wavelet power 

spectra (WPS) of the various force Fx time series (depicted in Fig. 2). The results are 

illustrated in Fig. 3. In this figure, the horizontal axis represents the number related to the 

sampling points, and the vertical axis denotes the period in sampling intervals. The colors 

red and blue represent the highest and lowest power levels, respectively, with the other 

colors denoting intermediate power levels. Figures 5a-c illustrate the results for  

particular cases of spindle speed N = 3500, 5000, and 6500 rpm. The main harmonics 

represented by dark red color are of about 69, 48, and 37 (measured in terms of the 
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sampling interval) in the Figs. 5a-c, respectively. They are related to the corresponding 

spindle speeds. In every case we observe also the multiple of that frequency but 

interestingly the periodicity composed of about 10 sampling intervals is a fixed and 

present in all power spectra. In the Fig. 5a (N = 3500 rpm), one can clearly see an 

intermittent (as in [24-25]) cutting behavior After increasing the speed, in Fig. 5b (N = 

5000 rpm) the process becomes weaker and more homogenous. In the last case (Fig. 5c, 

N = 6500 rpm), we observe that the intensity increases are grouped in a periodic pattern 

Additionally, Fig. 5c shows intermittent increases of intensity for very short periods of 2 

sampling intervals. The above analysis clearly indicates that at  a certain speed (N ≈ 5000 

rpm), the dynamics of a milling  process is changing. A competition between two time 

scales of system response leads to more complex behavior which can directly influence 

the final surface of  the designed product.  

5. Concluding Remarks 

 We have examined the dynamics of cutting force variations in milling of a fiber-

reinforced composite material by analyzing the experimental time series of the largest 

force component (Fx) using wavelets, and multifractals.  The wavelet analysis revealed 

that the short or high-frequency periodicities of 2 and 10 sampling periods are 

intermittent. Interestingly, the largest detected intermittences coincided with the 

maximum of fluctuations measured by the standard deviation. The above conclusions 

have been confirmed also by the multifractal measures which showed that there is a 

noticeable deviation of the changing trend in the correlation 0  and complexity measure 

 at the particular spindle speed ( = 3500 rpm). This  peculiar behavior was formerly  

investigated by the multiscaled entropy showing its nonhomogenous behavior against the 
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scaling and similarity factors which confirmed the main changes in short period 

(intermittences) as well as long-period (modulation) changes [11]. 

 Note, in the  standard approach to milling one can follow the uniform material which 

could fit the mathematical model and the corresponding  regions of stability [3,26-30]. 

On the other hand, the results obtained here, for a composite material, can be used further 

to study the stability of the milling process and to develop new methods of control. To 

get further insight, it would be of interest to analyze the cutting force variations during 

milling of different types of composite materials. Results of such analysis will be 

reported in a future publication.   
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Figure 1 Schematic diagram of the experimental procedure (a),  a photo of the 

experimental set-up (b). 
 

 

 

 

 

 

 
 

Figure 2. Time series of the measure force (Fx) at five different speeds: (a) 2000 rpm,  

                (b) 3500 rpm, (c) 5000 rpm, (d) 6500 rpm and (e) 8000 rpm. 
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Figure 3 Critical exponents distributions of the various spindle speed time series shown 

in Fig. 2 (parts (a-e) in this figure correspond to parts (a-e), respectively, in Fig. 2). 
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(a)                                                           (b) 

 

 

Figure 4 Tendencies in the change of multifractal parameters 0 (a) and  (b) versus N.  
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(a) 

 

 

(b)  

 

 



 18 

(c)  

 

 

 

 

 

 

Figure 5 Wavelet power spectra (WPS) of the various spindle speed time series shown in 

Fig. 2 (parts (a-c) in this figure correspond to parts (b-d), respectively, in Fig. 2). 
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Table 1. Summary of statistical and multifractal parameters of the force Fx 

 

Speed 

[rpm] 

average 

value 

[N] 

Standard 

deviation 

SD [N] 

0  

2000 7.32   22.07    0.294   0.804 
 

3500 11.70   24.45    0.125   0.624 

 

5000 12.34   21.65    0.190   0.632 
 

6500 8.02   26.90    0.080   0.528 
 

8000 9.68   19.20    0.047   0.253 
 

 

 


