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Abstract. Shape memory materials exhibit strong thermomechanical
coupling, so that temperature variations occur during mechanical load-
ing and unloading. In previous works the nonlinear dynamics of pseu-
doelastic oscillators subject to an harmonic force has been studied and
the possibility of non-regular chaotic responses has been thoroughly
documented. Instead of the standard Lyapunov exponent treatment,
the statistical 0-1 test based on the asymptotic properties of a Brown-
ian motion chain was successively applied to reveal the chaotic nature
of trajectories in the special case in which temperature variations were
neglected. In this work, the 0-1 test is applied to fully non-isothermal
trajectories. To improve its reliability the test has been applied on the
time-histories of maxima and minima of each trajectory, in each com-
ponent. The obtained results have been validated and confirmed by
the corresponding Fourier spectra. Non-regular solutions with different
levels of chaoticity have been analyzed and their qualitative difference
is reflected by the different values to which the control parameter K

asymptotically converge.

1 Introduction

Many materials (metallic alloys, polymers) exhibits the so-called shape memory and
pseudoelastic effects and have a broad range of technological applications like, for ex-
ample: vibration isolation, seismic protection, realization of various types of actuators,
switches and sensors [1,2].

Oscillators in which the restoring force is provided by a device with pseudoelas-
tic behavior exhibit complex nonlinear dynamic behavior which may be relevant for
several applications and has therefore received considerable interest in the scientific
literature in recent years [3–12]. Shape memory materials exhibit a complex thermo-
mechanical behavior due to the solid phase transformations that can be induced by
mechanical and thermal inputs. Due to the coupling between mechanical and ther-
mal behavior the temperature may undergo, during mechanical loading, significant
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Fig. 1. Schematic picture of a SMD model. SMM denotes a shape memory alloy element
with a hysteretic behaviour.

variations that affect the mechanical response. Therefore most of the dynamical ap-
plications of such materials should take into account the inherent thermomechanical
coupling. Various approaches for the constitutive modeling of shape memory mate-
rials are possible [1,2,13]. In this work a fully thermomechanical model introduced
and discussed in previous works [5,7] and based on one internal variable represent-
ing a phase fraction is used. This type of modeling offers an explicit description of
hysteresis, as well as of the prediction of the temperature variations induced by the
thermomechanical coupling.

Non-regular chaotic responses in pseudoelastic oscillators has been observed and
investigated not only by standard Poincaré maps and Fourier spectra but also with
less standard tools like the method of wandering trajectories [8,9]. Due to the increas-
ing number of variables and the system nonsmoothness, the identification of chaotic
solutions by the maximal Lyapunov exponent becomes questionable. The present pa-
per is a continuation of the recent papers [8,9] where the test 0-1 is used to distinguish
between regular and chaotic solutions [14–18,20]. In [19] the test was validated on
a few trajectories computed neglecting the temperature variations. In this work this
simplification is removed and fully non-isothermal trajectories are considered. In this
case, besides velocity, displacement, and phase fraction, also the temperature is part
of the specification of the state and evolves in time. The 0-1 test is applied to all the
components of the state and give consistent results. In order to improve its reliability,
the method is applied in a modified form in which the analyzed map is obtained by
taking maxima and minima of the original time-history. This approach is motivated
by an alternative way of description of nonlinear systems proposed by Piccardi and
Rinaldi [21] and discussed later by Yang et al. [22]. In their approach they propose
to use a peak-to-peak map instead of the standard Poincaré map. This can be use-
ful in cases of higher or fluctuating dimensions of the phase space. Our model with
hysteresis is an example of such systems showing solutions with different topologies
of attractors.



Will be inserted by the editor 3

2 Model and simulations
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Fig. 2. Time histories of displacement for five different cases specified in Tab. 2. (denoted
by a-e). The maxima and minima are denoted by green and blue points, respectively. For
discretized time ti = iδt, i counts the sampled events with 4000 points per period.

A Shape Memory Oscillator (SMO) is a system composed of a main mass con-
strained by a suitable assembly of shape memory materials, called Shape Memory
Device (SMD), that provides a pseudoelastic restoring force on the main structure
(Fig. 1).

SMDs are thermomechanical systems since the solid phase transformations occur-
ring during mechanical loading involve the production/absorption of heat that induces
temperature changes that, in turn, significantly affect the mechanical response. As
was shown in [5] a suitable constitutive framework for SMO is obtained if at each
time t the state of the oscillator is described, besides displacement x (t) and velocity
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v (t), by an internal variable ξ (t) ∈ [0, 1] that models the internal state of the SMD
and by the temperature θ (t).

In the general modelling framework of [5], the effect of pseudoelastic shape memory
devices on mass vibrations is considered within a thermomechanical environment
characterized by a harmonic force excitation F and a convective rate of heat exchange
Q

F = γ cos αt, Q = h (θe − θ) , (1)

where γ and α are the excitation amplitude and frequency, θe the fixed environment
temperature and h the coefficient of convective exchange between the device and the
environment (Fig. 1).

Table 1. List of parameters used in the paper

symbol parameter

t time
x(t) displacement

xi, i=1,2,3,... sampled displacement points
x , σx average value and standard deviation of displacement

M(n, c) total mean square displacement in new coordinates
for n steps corresponding to sampled points

N length of the sampled points in the displacement time series
v(t) velocity

p(i), q(i) new coordinates obtained by nonlinear transformation
F harmonic force excitation
γ excitation amplitude
α excitation frequency
Q rate of heat exchange
θe fixed environment temperature
θ device temperature
h coefficient of convective exchange

between the device and the environment
ξ ∈ [0, 1] internal variable of Martensite fraction

(pure Austenite ξ = 0, pure Martensite ξ = 1)
ξ0 initial state of ξ variable
λ denotes the transformation displacement factor

maximum displacement that can be obtained by completely
transforming the material from Austenite to Martensite

Λ constitutive function of ξ and θ

sgn(.) sign function
q1, q2, q3 parameters responsible for modelling of a hysteretic loop,

which control the slope of the upper loop plateau,
position and slope of the lower loop plateau, respectively

J ,Z thermo-mechanical parameters
Kc and current (c dependent) parameter of the 0-1 test

K̃ and its median average over 100 of c values.

Modelling the pseudoelastic restoring force as in Ref. [5,6] and expressing all the
quantities in nondimensional form, the dynamics of the system is described by the
following equations

ẋ = v,

v̇ = −x + sgn (x)λξ − ζv + F,
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Fig. 3. Time histories of temperature variations for five different cases specified in ab. 2.
(denoted by a-e). Note that the temperature oscillations are 2 times faster than the cor-
responding displacement ones (see the displacement plots in Fig. 2a-e calculated, simulta-
neously). The maxima and minima are denoted by green and blue points, respectively. For
discretized time ti = iδt, i counts the sampled events with 4000 points per period.

ξ̇ = Z [sgn (x) v − JQ] ,

θ̇ = ZL

(

Λ

Jλ
+ θ

)

[sgn (x) v − JQ] + Q, (2)

where Λ is a constitutive function of ξ, θ whose explicit expression can be found in
[5] and

Z =
1

λ + JLθ + L
λ
Λ + 1

λ
∂Λ
∂ξ

. (3)

All system parameters and symbols used in the paper are presented in Tab. 1
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Fig. 4. Fourier spectra for displacement and temperature variations in five examined cases
a-e (Tab. 2) calculated simultaneously. The left panel corresponds to displacement, while
the right panel to corresponding temperature spectra. Figures a-e in both panels show an
enlarged area of the Fourier spectrum for small values of the Fourier amplitudes (the same
scale in all subplots of Fig. 4). For graphical reasons the harmonic amplitudes are cut to a
fixed value. The actual values of amplitudes of subsequent peaks in Fig. 4a are very different
from each other according to the ratios 1 : 0.10 : 0.014, so that the most important is the
first one.

Overall, the constitutive model for the SMD depends on 7 material parameters
that can be grouped as follows (see [7] for more details).

Mechanical parameters (q1, q2, q3, λ) that reflect the basic features of the device
(type and arrangement of the material) and determine the basic shape of the pseudoe-
lastic loop observed in isothermal conditions. Thermomechanical parameters (L, J, h)
that determine the features of the temperature variation.

To test the applicability of the 0-1 test to detect chaotic responses the system
described by Eqs. 1-3 has been integrated numerically over a time interval of 50000
excitation periods with 4000 points per period under the five combinations of system
parameters shown in Tab. 2.

Table 2. Summary of system parameters used in simulations for time series a-b (regular-like
response) and c-e (non-regular-like response), respectively.

model excitation

Time series λ q1 q2 q3 J L h γ α

(a) 8.125 0.98 1.2 1.017 3.174 0.12 0.08 1.0 0.400
(b) 8.125 0.98 1.2 1.017 3.174 0.12 0.08 1.0 0.140
(c) 8.125 0.98 1.2 1.017 3.174 0.12 0.08 1.0 0.227
(d) 8.125 0.98 1.2 1.017 3.174 0.12 0.08 1.0 0.185
(e) 8.125 0.98 1.2 1.017 3.174 0.12 0.08 1.0 0.255
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Fig. 5. Hysteretic loop plots (SMD force versus displacement) for the five examined cases.
The corresponding systems parameters are listed in Tab. 2.

Such parameter combinations correspond to two regular and three non-regular
trajectories. Figures 2 and 5 respectively show the time histories of the displacement
and the shape of the hysteretic loops in the force-displacement plane. The two regular
trajectories are chosen to be representative of two qualitatively different types of solu-
tions. The first solution, called (a), involves a full hysteresis loop followed by a second
elastic branch corresponding to the elastic behavior of the fully transformed material.
The second one, called (b), exhibits an hysteretic loop that does not involve the com-
plete phase transformations and thus lacks of the second elastic branch. Similarly, the
three non-regular solutions are chosen to be representative of three qualitatively dif-
ferent types of chaotic solutions. The first one, called (c), is a fully developed chaotic
solution that involves a rather wide wandering around phase space, symmetric in the



8 Will be inserted by the editor

two directions of displacement (like the regular ones). The other two, called (d) and
(e) are further chaotic solutions that shows a less extended wandering zone, occurring
asymmetrically on the two directions of displacement.

The corresponding time series of temperature are plotted in Fig. 3. Even at a first
sight they follow the regularity of displacement (Fig. 2). However their oscillations are
2 times faster than displacement. The Fourier transforms of both displacement and
temperature histories are presented in Fig. 4. The first two (a,b) show a discrete-like
spectra typical of periodic solutions, with case (b) showing more multiples harmonics
of the excitation period. Note that Figs. 2a and 3a represent periodic behaviour with
a constant amplitude. The hysteretic phase transition (Martensite -Austenite) is a
process that causes nonlinear distortion of the response function and involves har-
monic components in the Fourier spectrum. Displacement and temperature change
periodically but the shape of periodic functions differ slightly from the harmonic ones.
Therefore, as shown in Fig. 4a, there are three main harmonic components, even if
one of the three is largely predominant in terms of harmonic amplitude. The other
cases (c-e) differ considerably from the previous ones showing the clear bands of fre-
quencies typical of non-regular solutions. Additional information about the solutions
is provided by Fig. 5 as described in the previous paragraphs.

3 Test 0-1

To quantify the analysis of regularity of solutions, the 0-1 test has been used for chaos
detection [14–16]. This test combines both spectral and statistical properties of the
system and can distinguish different types of dynamics of the system by means of the
the value attained by the parameter K ∈ {0, 1}, defined below. In previous papers
[17,20,19], to optimize time of the calculations, the time series was sampled at one
quarter of the excitation period or using the concept of average mutual information
[23]. In this study a different criterion for sampling is used, namely the histories of
local maxima and minima are considered. The peak-to-peak analysis was justified by
[21], [22] as an alternative method to the Poincaré series. In the present paper we
decided to use maxima and minima map simultaneously to be sensitive to presence
and lack of the solution symmetry with respect to the reflection through the point
(0,0) (Fig. 5).

Below, one can find the description of the method that, for each set of model pa-
rameters, has been applied both to the displacement and temperature time-histories.
The discrete points indicated as xi correspond to the local extrema of the displace-
ment signal and are plotted as coloured points in Fig. 2. Following [19], we change
the coordinates from (xi) to (p, q) with

p(n) =

n
∑

j=1

xj cos (jc), q(n) =

n
∑

j=1

xj sin (jc), (4)

where c is a constant, c ∈ (0, π). One can see that (4) is equivalent to the Fourier
transform for chosen frequency.

Next, one computes the mean square displacement (MSD) of p and q:

MSD(c, j) =
1

n − j

n−j
∑

i=1

[p(i + j) − p(i)]2 + [q(i + j) − q(i)]2, (5)

where 0 ≪ j ≪ n (in practice n/100 ≤ j ≤ n/10). The values of MSD can be
bounded in time (for regular dynamics) or unbounded (for chaotic dynamics).
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Fig. 6. Mean square displacement calculated for mechanical displacement x (left panel)
and temperature θ (right panel), both indicated by the same symbol MSD, as a function
of growing time index j in the space (p, q) for c = 1. The curves ’a’,’c’, and ’e’ correspond
to the cases in Tabs. 2 and 3. Note that there is a visible difference between cases related
to ”strong chaos” and ”weak chaos” (’c’ and ’e’) and ”weak chaos” and ”regular” (”e” and
”a”), respectively (see Tab. 3). Note that c = 1 is the specific choice of c ∈ (0, π) which was
used in the calculation of K(c) (Eq. 6).

The final quantity K is calculated as an asymptotic growth rate of MSD:

K(c) =
Cov[j,MSD]

√

Cov[j, j] · Cov[MSD(c, j),MSD(c, j)]
, (6)

where j = n/100..n/10, Cov[j,MSD(c, j)] = E[j−E[j]]·[MSD(c, j)−E[MSD(c, j)]]],
and the expectation value E[.] estimates the corresponding average.

The value attained by K provides quantitative information about the regularity
of the solution, since values close to 0 correspond to regular solutions while bigger
values correspond to increasing levels of non-regularity.

The same procedure has been applied not only the displacement but also to the
temperature time series θ(i) (Fig. 3), taking n = 10000 for extrema of the displace-
ment and n = 20000 for temperature coordinates, due to the different frequency of
oscillation of the two variables.

Table 3 shows the values of K obtained for each one of the five trajectories con-
sidered on both displacement and temperature histories. Although not reported in
the table, results qualitatively similar are obtained if the time histories of the other
state variables are considered.
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Table 3. K values calculated for extremes of displacement Kx and temperature Kθ.

time series type of solution Kx Kθ

a regular -0.001 0.001
b regular 0.009 0.037
c ”strong” chaos 0.992 0.995
d ”weak” chaos 0.316 0.501
e ”weak” chaos 0.464 0.811

From the results of Tab. 3 it is evident that K ≈ 0 for solutions (a-b) in both
variables x and θ, proving that the trajectories are evidently regular. On the other
hand, for the most consolidated symmetric chaotic solution (c), the test yields K ≈ 1
in both variables which shows a strongly chaotic solution. Interestingly, for the non-
symmetric less developed chaotic solutions (d) and (e) the value of K, while being
considerably higher than 0 hence proving the non-regularity of the solution, satisfies
K < 1, namely it is smaller than those of typical chaos. These results seem to suggest
that the solutions (d) and (e) are also chaotic but the scale of their attractors is
different from that of solution (c). A similar conclusion was obtained in [9] by means
of a modified method of wandering trajectories. Note that the particular cases of
”regular”, ”weak chaos”, and ”strong chaos” differ by the growing MSD increase
ratio (Fig. 6).

4 Conclusions

The 0-1 test has been applied to the history of the maxima and minima of the time
evolutions of the various components of the response of the thermomechanical pseu-
doelastic oscillator.

From the obtained results, it turns out that the method is capable to correctly
recognize chaotic solutions by analyzing each one of the components. Moreover, it is
also capable to detect the difference between chaotic solutions with different strength
(Fig. 6). For regular solutions the control parameter K asymptotically tends to 0
while for non-regular solutions it tends to definitely non zero values but with different
magnitude that, according to the present simulations, seems to be correlated with
different levels of chaoticity.

The estimation of the Lyapunov exponents meets serious problems in embedding
dimension determination for non-continuous time-delayed and hysteretic systems,
hence nor standard Wolf algorithm with Jacobi matrix [24] nor Kantz algorithm
with phase space embedded from time series [25] can be used. In some limited cases,
instead of the full phase space, a phase plane subspace could be used for Lyapunov
exponent estimation [26]. However it is not clear how to determine the parameter
regions of plausible applications for this approximation. In this context, the 0-1 test
is very useful because it does not relay on the system dimensionality.
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