
Meccanica 39: 105–112, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Nonlinear Analysis of Experimental Time Series
of a Straight Turning Process
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Abstract. We investigate vibrations generated in a straight turning process. Applying correlation functions and
the Fourier transform to experimental time series, we have analysed their nature. Particularly, we have identified
whipping caused by the non-ideal suspension of the cutting workpiece. Our investigation shows also a large
stochastic component of vibrations. It can be the effect of random forcing due to the initial roughness of a cutting
surface and/or spontaneous chips breaking.
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1. Introduction

Recently, industry needs for products of technological processes, including cutting and turn-
ing, have been increasing rapidly. These needs as well as global trade forced the improvement
of technological processes to satisfy the market in terms of quantity, quality and price. A big
progress has already been made in tool developments and in process real time monitoring
and control [7, 17]. Nevertheless, the problem of obtaining a high quality final product during
massive production has not been solved yet. So the next step is to identify and understand the
basic physical phenomena that take place during the cutting or turning processes. These pro-
cesses include such peculiar nonlinear ones as dry friction [22] or impacts after tool-workpiece
contact loss [10]. For this, theoretical and experimental works on cutting and turning processes
have been focused on identification of quasi-periodic chatter vibration sources [12]. Other
instabilities of cutting process include stochastic and chaotic vibrations [5, 8, 11, 15, 19]. All
these vibrations, appearing during the cutting process, are harmful for machining technology.
They lead to deviations in final surface parameters.

Preliminary studies on nonlinear modelling and the existence of primary and secondary
chatter were conducted by Grabec [2, 3], Marui et al. [12], Gradisek et al. [4], Wiercigroch
and Cheng [23], Warmiński et al. [20, 21], Litak et al. [9], Pratt and Nayfeh [14], Stepan and
Kalmar-Nagy [18].

The corresponding experimental results, mostly on an orthogonal cutting process, have
been discussed in several recent papers [11, 13, 19]. Here we continue in this direction
and examine the straight turning process and identify the nature of generated
vibrations.
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Figure 1. The experimental standing of a straight turning process (a). Schematic picture of yz projection of turned
workpiece in presence of vibrations (b). Note the deformation of surface as a function of angle φ.

2. Experimental Standing

We start by defining the geometry of process and the description of measured quantities. Our
experimental standing for a straight turning process consists of the tool–workpiece system
(Figure 1(a)). The necessary coordination systems include cutting forces in x, y, z directions:
Fx , Fy , Fz. Forces were measured by a quartz dynanometer. The electrical charges delivered
there from the quartz sensors are converted by charge amplifiers into proportional voltages,
which may be processed by the usual instruments. The displacements of a workpiece, in ortho-
gonal directions, y, z were measured by laser displacement-meter devices placed behind and
above the workpiece, respectively. These displacements were related to the absolute position
of a workpiece during the turning process.

In Figure 1(b) we present a schematic plot of the final product surface with some consid-
erable roughness. Folds on the surface are caused by harmless vibrations generated during
the technological process. The aim of this paper is to perform mathematical analysis of the
experimental time series collected by using the above equipment.

3. Experimental Results and Analysis

We have performed a series of experiments changing the technological parameters like a
rotational velocity � and a diameter of the workpiece d (Figure 1(b)) and the assumed cutting
depth h. The tests were also done for different kinds of cutting materials. Here we present the
results for cutting a workpiece of gray iron with the following process parameters: d = 33 mm
and � = 770 rev/min and a feed velocity vx = 0.1 mm/rev, h = 1 mm. The frequency of data
accounting was fixed at 2000 scans per second.

The results for forces measured during the turning are plotted in Figure 2. As we expected,
the largest component of average force was in z direction (cutting force) while the smallest
one was in x direction. (Fx = 134 N, Fy = 172 N, Fz = 232 N). The time histories of these
components are presented in Figure 2. Note that oscillation amplitudes for all components
are quite large. The amplitude reaches even 80% of the average values. In case of Fy , one
can also note the change of sign (Figure 2(b)) for t ≈ 0.4 s. This may be due to the friction
phenomenon between the tool and a chip [22].

Similar behaviour is also typical for displacements. In Figure 3 we present time histories of
workpiece y and z displacements, respectively. Now we are going to explain such behaviour.

Firstly, one should note that vibrations are modulated with slow component of about 13
periods per second. This period can be directly related to the rotational frequency of work-



Nonlinear Analysis of a Turning Process 107

  

Figure 2. Time series of cutting forces: Fx (a), Fy (b), Fz (c).

Figure 3. Time series of displacements: y (a), z (b).

piece revolution �. Thus, the natural explanation of this modulation is whipping due to an
unbalanced workpiece. This effect is always present in the cutting process.

Secondly, all time history plots in Figures 2 and 3 indicate that there is a large component of
non-periodic vibrations. Clearly, there are two possibilities [1, 6, 16]: either the vibrations are
chaotic (in the sense of deterministic chaos) or the system vibrates stochastically with external
and internal random influences. To examine this effect further we calculate the autocorrelation
function C(n) for the series of experimental points

s̃(mτ) = s(mτ)− s̄, (1)

where s denotes chosen measured quantity (i.e. force components Fx , Fy , Fz or displacements
y, z), τ is the time interval between measurements, m is a natural number or 0 and denotes the
number of measurement (t = mτ is a discrete measurements time), and s̄ is an average value
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Figure 4. Autocorrelation function C(n) for cutting force components Fx , Fy , Fz (a) as well as the displacements
y, z (b).

of s(mτ). The autocorrelation function can be written as follows:

C(n) = lim
N→∞

1

N

N∑

m=0

s̃(mτ)× s̃((m+ n)τ). (2)

In our case, N denotes a number of measurement events chosen to be N = 4000.
This function C(n) was calculated for cutting force components Fx , Fy , Fz and displace-

ments y, z, showed in Figures 4(a) and (b), respectively. It was plotted against in the region
of small ‘correlation time distance’ n(n = 1, . . . , 4). It is easy to note that in cases of Fx , Fz
(Figure 4(a)) and x (Figure 3(b)) the following relation is fulfilled:

C(τ) <
C(0)

2
, (3)

showing that the correlation time is very small. That is, it is of the order of a single time
step τ . Interestingly, such relation indicates that the autocorrelation function can be simplified
to

C(n) = C(0)δ0n for small n, (4)

where δ0n is a Kronecker delta, corresponding rather to the chaotic signal [16] where the
close trajectories are divergent. However, in other cases for Fy and y (Figures 2 and 3), the
behaviour is different from those described by equation 2, showing evidently some higher
frequency components.

In Figure 5 we have plotted all experimental points using a three dimensional coordinate
system of Fx , Fy , Fz. Each point Fn has been accounted using a discretized time
tn = nτ :

Fn = F(nτ) = [Fx(nτ), Fy(nτ), Fz(nτ)]. (5)

The probability distribution of experimental points P(F) defined for small force cubes �Fx
�Fy�Fy appeared to have a continuous character.

For better clarity we present, in Figures 6(a)–(c), the power spectra, in the logarithmic
scale, for force components (Fi , i = x, y and z, respectively):

C(ω′) = FT (C(t)) = 1

N

N∑

k=1

C(t) einτω′
(6)
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Figure 5. Experimentally measured points in a coordinate space spanned by cutting force orthogonal directions
(Fx , Fy , Fz). Note that the distribution is continuous.

Figure 6. Power spectra of cutting forces in the logarithmic scale: logPFi(ω
′) = log(C(ω′)) for Fi =Fx (a),

Fi = Fy (b), Fi = Fz. (c) and a Fourier Transform FTFx(t). Short arrows (d) show the constant static term
Fx(ω

′ = 0) (1) and the amplitude Fx(ω′ = �) (2).

for large enough N . Similarly, a Fourier transform for Fx component (Figure 6(d)) reads

Fx(ω
′) = 1

N

N∑

k=1

Fx(t) e
inτω′

. (7)

Each of the power spectrum presented in Figures 6(a)–(c) is rich in frequencies; however, one
can easily find ω′, which is the dominant one. It corresponds to a rotational velocity of the
workpiece � ≈ 81 rad/s. Thus, we conclude that the unbalanced workpiece shaft is causing a
whipping effect. It acts like additional parametric forcing, which introduces excitation energy
to the system. This effect is also visible in Figure 6(d). Surprisingly, plotted in the normal
scale, the amplitude Fx(ω′ = �) is much smaller than Fx(ω′ = 0) ≈ Fx . Note, in Figure 6(d),
we introduced short horizontal arrows to distinguish the static term level Fx(ω′ = 0)

(1) and the amplitude related to the forcing frequency � Fx(ω′ = �)
(2) We have also found a similar tendency for Fy and Fz components.
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This continuous distribution of experimental points, together with the rather non-typical be-
haviour of the correlation function, lead us to the conclusion that the system shows regular
vibrations disturbed by stochastic influences [1, 6]. To probe the possibilities of chaotic and
stochastic motions, we conducted calculations of correlation length l [16]. Usually in the case
of regular vibrations, the stochastic component smears the trajectory inside a circle of radius l
around each point of a system trajectory [1]. To examine such smearing, one look for a proper
configuration space and its dimension. As we have measured three components of forces F,
there is no need to consider an embedding dimension as an extraction from one of the Force
components, as has been done in Marghitu et al. [11]. Thus instead of detailed embedding
space analysis, we introduce rather a coordination space spanned by the cutting force orthog-
onal directions (Fx , Fy , Fz) and assume that the characteristic embedding dimension is fixed
at 3. Now we can calculate the ‘spatial’ correlation function, in a force space [Fx , Fy , Fz]:

C̃(l) = lim
N→∞

1

N2

∑

ij

 (l − |Fi − Fj |), (8)

where (x) is the Heaviside step function and the correlation dimension D2 for small enough
l:

D2 = log C̃(l)

log l/ l0
+ const. (9)

Figure 7 shows the results of such calculations. Here, the slope of log C̃(l) against log l/ l0
(l0 is an arbitrary length which was taken to be 1 N for a practical reason) for a linear part
of a plotted curve (in a small l region) gives the result for a correlation dimension D2 which
is defined as tanα ≈ 3 (Figure 7). This, a purely integer value of D2, ends all speculations
on the chaotic origin of vibrations and provides a final argument for the random nature of
vibrations in our straight turning process. A large characteristic correlation length lc ≈ 90 N
(Note lc = 90 N corresponds to log(lc/ l0) = 4.5 in Figure 7) indicates that the stochastic
component is considerably large.

The final surface obtained in the process is presented in Figure 8. Note, the deformations
of surface from the flatness were plotted against the angle φ defined earlier in the schematic
picture – Figure 1(b). From the stochastic vibrations we find that the discrepancies from the
roughness line reach about 5% of the assumed cutting depth h=1 mm.

Figure 7. The correlation dimension D2 for small enough l.
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Figure 8. Final surface deformation as a function of angle φ estimated from measured y displacements of a
workpiece during cutting process. The angle φ was defined in schematic picture Figure 1(b).

4. Summary and Discussion

The results obtained from our samples show the parametric whipping excitation and most of
all the large stochastic component of vibrations. We have used standard mathematical methods
like correlation function approaches to analyse the outgoing experimental signal. On the basis
of experimentally measured forces, their probability distribution and spatial correlation func-
tions, we have convinced ourselves that the stochasticity has a random noise character. The
characteristic force correlation function length log(lc/ l0) ≈ 4.5 (Figure 7) relates to the size
of the distribution lc = |Fc| = 90 N (Figure 5). The above conclusion is particularly supported
by the fact that our workpieces of gray iron have been characterised by the typical roughness
of initial surfaces [8] or the dynamics of chips breaking, causing external random forcing and
grain composition of the material giving internal randomness during the technological process.
Our results justify those theoretical approaches to a cutting process, which assume the effects
of random noise in orthogonal cutting [5, 15, 23] and, more recently, straight turning [10]
processes.

Interestingly, our preliminary investigations showed that the effect of random noise was
smaller, but it is not eliminated in workpieces with other kinds of material.
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