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Abstract 
The paper presents an analysis of the possibility of increasing the accuracy and stability of 

machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An 
effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result 
of oriented change of the elastic-deformable state through the application of a tensile force which, 
combined with the machining force, forms longitudinal-lateral strains. The paper also presents 
mathematical models describing the changes of the elastic-deformable state resulting from the 
application of the tensile force. It presents the results of experimental studies on the deformation of 
elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An 
estimation was made of the effectiveness of the method of control of the elastic-deformable state with 
the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that 
controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of 
machining, and thus achieve a theoretically assumed level of accuracy.  
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1. Introduction  

A half or all machine parts are rotating elements: shafts (ca. 40%), discs, sleeves, 
cylinders etc. Among those, up to 12% are low-rigidity shafts (Pus et al., 1982). 

A highly important, and at the same time complex problem is the achievement of the assumed 
accuracy of machining and operational reliability of low-rigidity shafts. Such shafts are 
elements of many assemblies of various machines and devices, and find applications in, 
among others, aerospace industry, precision mechanics, tool-making industry (special tools), 
automotive industry. They are characterised by disproportion in overall dimensions and low 
rigidity in specific sections and directions. Stringent requirements are also applied in terms of 
the geometric shape, mutual positioning of surfaces, linear dimensions and quality of surface 
finish.  

The specific nature of machining of similar parts causes that the primary difficulty relates 
to the achievement of the required parameters of the accuracy of form, dimensions and 
surface quality. Low inherent rigidity and relatively low rigidity of the shaft, compared to the 
stiff assemblies of the machine tool, cause the appearance of vibrations under specific 
conditions. The process of machining interferes with and destabilises many factors (large free 
distortions of shafts, vibrations in the tool-object system, breaking of chips etc.), which causes 
a reduction in the accuracy of machining (Cardi et al., 2008; Hassuiand  and Diniz, 2003; 
Jianliang and  Rongdi 2006; Litak et al., 2004; Litak and Rusinek 2012; Qiang, 2000; 
Altintas, 2000).  

The traditional methods of achieving accurate machining of low-rigidity shafts, based on 
multi-pass machining, lowered parameters of machining, steadies and additional treatments 
and manual lapping, cause a significant lowering of efficiency, and in many cases preclude 



the achievement of required reliability; also, they are incompatible with the contemporary 
requirements of automation, they are uneconomical and inefficient.  

The initial studies on the dynamic response of a rotation shaft subjected to a moving load 
has been done by Katz et al. (1988). Especially, they focused on the dynamical effects 
accounted by different approaches: Euler-Bernoulli, Rayleigh, and  Timoshenko beam models 
for a simply supported rotating shaft leading to the changes in rotor response.  This problem 
was generalized to a three-directional load moving in the axial direction by Ouyang and Wang 
(2012).  

In the context of a regenerative cutting process, chatter vibrations response of the 
workpiece  modelled as a flexible beam were also studied by Altintas (2000), Tusty (2000), 
Chen  and Tsao (2006),  and more recently by Bisu et al. (2009a; 2009b), Cahuc et al. (2010), 
Han et al. (2012).  

 
 
 

2. Mathematical models of machining of elastic-deformable shafts 
 
One of the effective ways of improving the accuracy of machining of parts of this type is 

increasing their rigidity as a result of oriented change of their elastic-deformable state, through the 
application of a tensile force which, combined with the machining force, forms longitudinal-lateral 
strains. As shown by experimental studies, increase of rigidity of parts with diameters from 2 to 6 mm 
and length from 100 to 300 mm, with their loading with a tensile force within the range from 980 to 
1960 N, leads to a reduction of elastic strain by from 80 to 20%, respectively.  Furthermore at 
diameters d = 8 – 12 mm such a loading reduce elastic stain by 5 –7%. Increasing of d > 16 mm at a 
given length has practically no effect on the value of static stiffness and, correspondingly, on the 
deformation of the parts (Jianliang and Rongdi, 2006; Świć et al. 2010). 

Analysis of the effect of the tensile force on the static rigidity of machined elements can be 
performed with the use of the model in Table 1, line 1. The model does not provide an adequate 
description of the behaviour of the elastic line at various methods of fixing. This means that, in the 
model in question, the element fixed in the tailstock of the lathe has both the possibility of linear 
displacement along the axis of the part and the possibility of free rotation of the section at the point of 
fixing. In many cases, such a method of fixing does not lead to a reduction of deformation in the 
machining zone. 

With the application of the tensile force, the fixing of a shaft can be realized by means of a spring 
sleeve. Such a method of fixing can be interpreted as rigid fixing, with the possibility of axial play 
(Tab. 1, lines 2 and 3).  

To minimise elastic deformation, it is also possible to control the angle of rotation of the part 
section at the point of fixing, through the application of a tensile force shifted with relation of the axis 
of the centres (Świć et al. 2010). This kind of fixing can also be represented as a moving rotary 
support (Tab. 1, line 4).  
The fundamental feature of the presented schematic is the application of the control moment at the 
point of fixing of the machined part – through eccentric tension. The application of a single 
controllable force factor – eccentric tension – permits the generation of two force factors at any 
predefined section of the part, and in the machining zone in particular: the longitudinal force Fx1 and 
the bending moment M2 = Fx1 · e, counteracting the machining forces, i.e. the oriented elastic-
deformable state of the shaft.  
The application of tensile forces with a shift relative to the axis of the centres at both ends of the 
machines shaft – in this case the fixing can be represented as a moving rotary support (Tab. 1, line 5) – 
permits the control of the position of the part axis from two sides at any position of the cutting tool, 
relative to the length of machining. Moreover, it is possible to use a special fixture for mobile 
tensioning in the machining of long shafts with low rigidity (Tab. 1, line 6).  

The specifics of elastic-deformable loading of low-rigidity parts, with eccentric compression in 
machining operations, are taken into account in model 7 (Tab. 1). 

In Table 1 the following symbols are used:  



Fx1 – tensile force; 
Fzg  – bending force; 
Fc, Fp, Ff  – are two bending force  and axial components; 
 
e  – eccentricity of tensile force in tension; 
M1 – moment generated by the axial component Ff of the machining force; 
x1, x2, x3 – current coordinates at each of the sections; 
a – distance between the cutting edge (point of load application) and the point of fixing 

of the part in the spindle; 
b,c               – other characteristic distances along the shaft;  
d  – diameter of the machined part; 
L  – length of the shaft; 
Q0 and M0 – initial parameters: perpendicular force and moment at the point of the fixing of the 

part, respectively.  
One of the methods that permit the generation of a mathematical model describing the kind of 

elastic line, with relation to the part parameters and to the parameters of the process of machining 
(loading forces) is the energy method of Ritz, by means of which the deformation functions were 
obtained for a tensioned rod with an end fixed rigidly (Tab. 1, line 2). 

Another method permitting the achievement of results with practical utility is the generation of a 
description of the elastic line of a low-rigidity part in lateral-longitudinal bending, in the form of a 
system of differential equations of the fourth order, with a constant coefficient. With the occurrence of 
concentrated forces and moments dividing  the shaft into sections the following differential equations 
can be written (axial tension – model 3) at each of the sections: 

 

  0"2 =− i
IV
i yy α , (1) 

where: 
EI

Fx1=α , E – modulus of elasticity, I – moment of inertia of the section.  

In the simplest case, the only disturbance of the elastic line is located at the point of machining, 
i.e. 

 { }2,1=∈i . (2) 

The solution of equation (1) can be written in the simplified single mode form (for symmetric 
situation - model 2 instead of hyperbolic functions the trigonometric ones are used) (Young  et al., 
2003): 
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and in the case of (2):  
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deformation ( ) 001 =y , angle of rotation of section ( ) 00'
1 =y  and ( ) 0

''
1 0 MyEI =⋅ , ( ) 0

'''
1 0 QyEI =⋅ , the 

constant coefficients were determined as follows:  
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and the equation of deformations on section I, taking into account (5) and the terms for the 
determination of α can be written as: 
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And the equation of deformation on section II can be written as: 
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Equations of deformations on sections I and II, for the case of model 4 (Tab. 1) and the other 
cases of loading considered, obtained in an analogous manner, are presented in column 4, Tab. 1. 

The values of the initial parameters Q0 and M0 were determined at extreme conditions at the end 
of the rod: 

 ( ) 0'
2 =− aLy ,  (9) 

and the equations of deformations at the end of the deformed rod:  

 ( ) ( )aLyay −−= 21 . (10) 

The results of solving equations (9) and (10) are given in column 5, Tab. 1. 
At eccentric tension (model 4, Ff ≠ 0, e ≠ 0) the differential equations (1) on each of sections I 

and II have the form: 

 0''
1

2
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 2 ''
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where: ,1
1 EI

FF fx −
=α  ,1

2 EI

Fx=α  

and the solution of (11) and (12) is written as (3), taking into account α1 on section I. Substituting the 
boundary conditions, conditions of balance and conditions of simultaneity of deformations (column 3, 
Tab. 1) into equations (11) and (12), a description of deformations was obtained, as presented in 
column 4, Tab. 1.  

The initial parameters Q0 and M0 were determined through conditions (9) and the equation of 
balance: 
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2 100 =−−+++=∑ eFaLF
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and the obtained values of Q0 and M0 are given in column 5, Tab. 1. 

A specific feature of the problem of control of elastic deformations of an elastic-deformable part 
under consideration, with two-sided eccentric tension (Tab. 1, line 5), is the ease of determination of 
the initial parameters Q0 at known M1 = Fx1 � e1 and M2 = Fx2 � e2 from the conditions of the balance of 
forces, relative to the axes of coordinates ( 0=∑Y ) and of the balance of moments ( 0=∑ bM  – 
columns 3 and 5). At the same time, it becomes more complicated to determine the angle of rotation 
Q0, at which the term sought was obtained from equations (10) and presented in column 5. 

For a long part loaded with a tensile force, the calculation schematic was presented in the form of 
a beam twice statically indeterminate (Tab. 1, line 6), loaded with bending force Fzg, moment 

21

d
FM f ⋅= and longitudinal forces Ff and Fx1. The values of the forces and moments are definite, 

with 1x fF F>  and 0fF > , therefore to the left from point A the beam is always in a state of tension, 

and the value of Ff can be negative as the direction of the working travel f changes. In the case of 
diameter equal to d1 on the left section of the part (from point D to 0) and diameter d2 (to the right 

from D), the axial moments of inertia of the cross-section will equal, respectively,: 
64

4
1

1
d

I
π= , 

64

4
2

2
d

I
π= , and parameters 

2

1
2 EI

Fx=α , 
1

1
1 EI

FF fx +
=α . When support A moves to the right, point D 

moves with it at the same velocity, and distance b has a constant value. Dimension a changes within 
the range of 0 ≤ a ≤ (l – a). To solve the double statically indeterminate problem of longitudinal-lateral 
bending of the beam, under loading with the moving tensile force Fx1, the left and the rights parts of 
the beam were analysed.  

From the boundary conditions and the conditions of mutual interaction of deformations (Tab. 1, 
line 6) the functions of deformations (column 4) and the initial parameters (column 5) were obtained. 

The results of modelling of the values of elastic deformations of the part within the machining 
zone (x = a) are presented in Fig. 1, the numbers of analytical relations corresponding to the numbers 
designating the models in Table 1. Relation 5 was obtained experimentally, with the part fixed in the 
grip of the spindle and in the spring sleeve of the tailstock, with no possibility of cross-section rotation 
at the point of fixing (model 3).  

 

 
 

Fig. 1. Estimated relations of elastic deformation changes of a shaft (numbers from 1 to 5 correspond to 
the numbers designating the models in Table 1). 



 
3. Experimental studies 

The experimental studies of elastic deformations of low-rigidity shafts were conducted on a 
special test stand, constructed on the basis of a lathe (Fig. 2).  

A shaft (1) is aligned in the lathe grip between a standard compression dynamometer (2) type 
DOSM–3–02 (measurement range from 19.6 to 196.0 N), mounted by means of a bracket (3) in the 
cutter holder (4) of the lathe. The radial component of the cutting force Fp was estimated using the 
dynamometer (2). Registration of elastic deformations was conducted by means of an electromagnetic 
displacement transducer (9) with a recorder unit (10). The transducer (9) was mounted in a holder (8) 
on a plate (6) positioned on the guide rails (5 and 7). 

1 2 3 4

567

8

9

10

 
Fig. 2. Schematic of the experimental stand for the testing of elastic deformations of parts. 

The experimental stand was used to test the elastic deformations of shafts with diameters d = 2 –
18 mm and lengths of 100, 200 and 300 mm. The maximum deformation of the part, under tension 
with the axial force Fx1, decreases in a non-linear manner in accordance with the equations given 
above (Tab. 1).  

Experimental results (model 1) are shown in Fig. 3. The shaft was loaded with axial force Fx1 = 
1960N (a) and 980N (b), respectively, while the lateral force was Fzg = 19.6 N. The measurements 
accuracies were  0.4 N and 0.01mm for Fx1 axial forces and displacements, respectively.  

Based on the further experiments performed (to model 2) one can state that the discrepancy 
between the analytical results and the experimental data is from  3 to 12%. The calculations were 
made with the use of model 4, with the assumption that 01 ≠xF , 0=e  fully correspond to the data 
obtained from model 1.  

Certain discrepancies between the results could also result from the assumptions adopted in the 
selection of calculation scheme.  
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Fig. 3. Experimental dependence of elastic shaft deformation (of  length L = 300 mm and 
diameter d = 4 mm ) loaded with axial force Fx1 = 1960N (a) and 980N (b). The lateral force Fzg = 
19.6 N, fitted according to the model shown in Table 1, case 3. 

 
 
 
On the basis of the calculations of elastic deformations caused by axial tension, and also on the 

basis of experimental data, it can be stated that at any point on the part (L/d = 15 – 50 within the range 
of shaft diameters under consideration), and at the point of machining in particular, situated directly 
beneath the cutting edge (x = a), the value of elastic deformation of the shafts tested can be 
significantly reduced through the selection of a suitable tensile force Fx1 and eccentricity e (Halas et 
al., 2008; Świć et al. 2011). 

In the development of technological methods for the control of grinding accuracy of low-rigidity 
shafts the elastic-deformable state can be generated by means of longitudinal compressive forces, 
shifted relative to the axis of the centres or applied additionally to the ends of the parts by means of 
bending moments.  

 
 
 

4. Optimisation of parameters of an elastic-deformable state 
The calculation scheme of the forces acting on the shaft and the elastic line of the shaft are 

presented in Table 1 (line 7). The application of compressive forces, shifted relative to the axis of the 



centres, was considered as method of generation of a bending moment applied to the face of a low-
rigidity shaft and as a technological premise for the control of machining accuracy.  

In the case of a beam compressed with a longitudinal force and transmitting any lateral force, the 
solution of equation (1) can be presented in the form:  
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where: 0y , '
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0y , '''
0y  – deformation, angle of rotation, second and third derivatives at the origin of 

the system of coordinates, respectively,; f(x) – function of the effect of lateral loads.  
The equations of the lines of elastic deformations on sections I and II have the form of: 
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The initial parameters, in accordance with the conditions adopted earlier (Tab. 1) are as follows: 
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where: 
L

aL −=β , Fx1 – in the given case – compressive force.  

After integration and transformation of (15), the equation of the bending moment on section I 
was obtained:  
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the equation of deformations on the shaft sections ultimately assumes the form:  
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For the estimation of the effectiveness of the method of control of the elastic-deformable state 
after the application of bending moments to the shaft face, and of the technological capabilities of such 
control, the relation describing the elastic line of the shaft was obtained in the form of (15).  

The initial parameters are determined from the relation: 
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Taking into account equation (19), the function of deformations ultimately assumes the form: 
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where: 
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Equations of lines of elastic deformations (20) and (22), as well as the equations presented in 
Table 1, describing the position and shape of a low-rigidity shaft in relation to its dimensions and 
active loads, permit estimation of the effectiveness of control of the elastic-deformable state of a low-
rigidity shaft during turning.  

The control of the elastic-deformable state with the use of the tensile force Fx1 and eccentricity e 
as the regulating factors, enabled the formulation of the problem of optimisation: definition of the 
values of the tensile force Fx1 and eccentricity e as functions of part parameters L and d, component 
forces of machining Ff, Fp, Fc (and thus also machining parameters v, f, ap), distance a from the cutting 
edge to the point of fixing of the part in the spindle and the instant coordinate x, minimising the 
deformation of the part: 
 ( ).,,,,,,,,, 1

,
min

1

xaeFfavFldy xpf
eF x

ϕ=  (23) 

Function y was arrived at on the basis of relations presented in Table 1 (columns 4 and 5). The 
values of components Fp, Fc and Ff of the machining force were defined by means of the technological 
conditions, i.e. the parameters and the geometry of machining; ui technological limitations imposed on 
the variable parameter Fx1 resulting from the specific design features of the equipment and from the 
permissible tensile loads. 
 { },,0 La∈   { },,0 Lx∈  { },2,0 de∈  

 ( ) ( ){ },: 111 ixixx uFgFF ≤=∈σ   ,0≥iu   1, .i n=  (24) 
The most significant effect on the accuracy of machining is that of the value of deformation 

directly beneath the cutting tool; expressions (23) and (24) should be complemented with the 
limitation: 
 xLa −= . (25)  

The formulated problem relates to issues of non-linear programming and can be solved with 
suitable methods [21]. The easiest way is to define the required values of the longitudinal tensile force 
Fx1, at axial tension (model 2 or model 4 at e = 0). For the selection of the values of Fx1, corresponding 
to the relations (23), (24), (25), the bipartite method was applied. Numerical studies with the help of 
the method grids (Fig. 3a) demonstrated that the objective function y is a unimodal function.  

The bipartite method permits the determination of the extreme value of Fx1 within: 
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steps or on the path of (K – 1) – fold calculation of the objective function y.  

 
Fig. 4.  Objective functions and changes of tensile force Fx1 in relation to the machining length obtained 

in the case of various models (1-3 – numbers designating models from Table 1). Note, different 
scale in Fig. 3a.  

 
The results of modelling (Fig. 3 b, c, d) indicate the possibility of obtaining, determined by the 

process conditions, low values of elastic deformations as a result of controlling the force Fx1, but with 
relation to the condition (24) in such cases it is advisable to control Fx1 at given values of eccentricity e 
when testing model 4 (Martos, 1975). 

To achieve the required low value of deformation the eccentric tension can be applied (model 4 at 
e ≠ 0). 

Analysis of the results of numerical studies, obtained from relations (23), (24) and (25), as well 
as the supporting experimental tests, demonstrated that elastic deformations of low-rigidity shafts 
under eccentric tension control decrease, in the case of the parts class considered, from 2- to 20-fold, 
and in the case of shafts with d < 6 mm the decrease is achieved at lower values of the tensile force. It 
was demonstrated that eccentric tension very effectively reduces the elastic deformations of shafts 
with d ≥ 6 mm (L = 300 mm) as compared to axial tension. For example, at d = 8 mm, L = 300 mm, 
Fp = 147 N, λ1 = Fp/Ff = 0.5 (κr = 900) and values of Fx1 = 980 N, e = 2.5 mm (Fig. 4d) elastic 
deformations on the whole machining length are from 2- to 2.4-fold lower than in the case of axial 
tension. With adaptive control of the values of eccentricity e and force Fx1, the value of elastic 
deformations can be reduced 18-fold; it amounts to (3 – 4.5)·10–2 mm (L = 300 mm, d = 8 mm, Fp = 
147 N, λ1 = 0.5, Fx1 = 1245N, e = 7.8 mm) and is practically stable over the whole length (Fig. 4e).  

 



 

 
 

Fig. 5.  General view of 3D of hyperbololid like shape of the response surface for the values of the 
objective function – a); relations of change of objective function y(0), tensile force Fx1 (x) and 
eccentricity e with relation to length L at x = a – b, c, d, e: b) (d=6mm, Fzg=49N, Fx10=980N, 
L=300mm, Ff=30N), c) (d=6mm, Fzg=70N, Fx10=980N, L=300mm, Ff=40N), d) (d=8mm, Fzg=147N, 
Fx10=980N, L=300mm, Ff=196N), e) (d=8mm, Fzg=147N, Fx10=980N, L=300mm, Ff=196N). 

 
To determine the optimum parameters Fx1 and e, taking into account the limitations (24), (25), 

one can apply both the method of grids and (with relation to the unimodal nature of the objective 
function) the gradient method.  

A general view of the numerically estimated 3D response surface  for  the objective function (23) 
with process limitations in the form of Fx1max, emax, and with an extreme at point F is presented in Fig. 
4a. In many cases there is no need to find the extreme, and it is sufficient to determine the required 
value of ysk.zad. The cutting planes O1A1C1D1 and O2A2C2D2 correspond to the required values of y’ sk.zad. 
and y” sk.zad., relative to which the set of optimum values of Fx1 and e is sought.  

The relations of changes of the objective function y, tensile force Fx1 and eccentricity e at various 
shaft diameters and values of machining force, obtained by means of modelling as a result of search 
with the gradients method, are presented in Fig. 4b,c,d,e. The modelling was conducted with the 



assumption of the following conditions: d = 6 mm, Fzg = 49 N, Fx10 = 980 N, Ff  = 30 N (Fig. 4b); 
d = 6 mm, Fzg = 70 N, Fx10 = 980 N, Ff  = 40 N (Fig. 4c); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, Ff = 
196 N (Fig. 47d); d = 8 mm, Fzg = 147 N, Fx10 = 980 N, Ff = 196 N (Fig. 4e). 

As follows from analysis of the results presented in Fig 4, control of the level of machining 
accuracy, at elastic-deformable state of the part with L/d = 15 – 50, can be effected with sufficient 
effectiveness through the control of two parameters: tensile force Fx1 and eccentricity e; this permits 
the achievement of a theoretically assumed level of accuracy.  

Loading a semi-finished product with a tensile force, causing the elastic-deformable state, is 
equivalent to the creation of an additional support causing an increase of the static stiffness of the part. 
Therefore, the alignment and the fixing of semi-finished products can be realized in self-centring grips 
or in a spring sleeve. 
 
5. Conclusions 

Machining accuracy of low-rigidity shafts can be effectively enhanced through increasing their 
rigidity as a result of oriented change of their elastic-deformable state, through the application of a 
tensile force generating, together with the machining force, longitudinal-lateral loads.  

Mathematical description of the object of control – function of deformations of a low-rigidity 
shaft – at defined parameters should take into account numerous factors: methods of part fixing, 
loading conditions, etc. In the approach proposed, the mathematical model is a problem of structural 
identification, therefore it is necessary for it to be sufficiently simple for further use in relation to 
problems of accuracy control, to comply with information on the mechanism, interrelations and 
parameters of phenomena, and to take into account those factors that have a dominant effect on the 
accuracy indices of the process of machining.  

The study on elastic deformations of low-rigidity shafts shows that the divergence between the 
analytical and the experimental results amounts to from 3 to 12%. Certain discrepancies between the 
results could be attributable to the adopted assumptions in the selection of calculation schemes. At any 
point on the shaft (L/d = 15 – 50 within the range of diameters under consideration), and in particular 
at the point of machining, directly beneath the cutting tool, the value of elastic deformations of the 
shafts tested can be significantly reduced through the selection of a suitable value of tensile force Fx1 
and eccentricity e. 

In the development of technological methods of controlling the accuracy of machining of low-
rigidity shafts, the elastic-deformable state can be generated by means of longitudinal compressive 
forces, shifted relative to the axis of the centres or applied additionally to the ends of the part by 
bending moments. 

Analysis of the results of numerical studies and experimental tests demonstrated that elastic 
deformations of low-rigidity shafts under eccentric tension control decrease by from 2- to 20-fold. 
Eccentric tension very effectively reduces the elastic deformations of shafts with d ≥ 6 mm (L = 300 
mm) as compared to axial tension. For example, at d = 8 mm, L = 300 mm, Fp = 147 N, λ1 = Fp/Ff = 
0,5 (κr = 900) and values of Fx1 = 980 N, e = 2.5 mm, elastic deformations on the whole machining 
length are from 2- to 2.4-fold lower than in the case of axial tension. With adaptive control of the 
values of eccentricity e and force Fx1, the value of elastic deformations can be reduced 18-fold; it 
amounts to (3 – 4.5)·10–2 mm (L = 300 mm, d = 8 mm, Fp = 147 N, λ1 = 0.5, Fx1 = 1245N, e = 7.8 mm) 
and is practically stable over the whole length. The assumed accuracy of machining of shafts in the 
elastic-deformable state, with  5015−=dL , can be achieved by controlling two parameters – 
tensile force Fx1 and eccentricity e. 

Loading a shaft with a tensile force is equivalent to the creation of an additional support causing 
an increase of the static stiffness of the part. Therefore, the alignment and the fixing of semi-finished 
products can be realized in self-centring grips or in a spring sleeve. Such a new elastic-deformable 
state of the workpiece could be also helpful to overcome chatter vibrations in turning process (Altintas 
2000).  

Apart from turning  process (Altintas 2000; Ouyang et al., 2007; Katz et al., 1988), the flexible 
tool mashing attracts more attention also in boring process (Li et al., 2003), milling (Xiong et al., 
2003; Movahhedy and Mosaddegh, 2006; Litak et al., 2013; Sen et al., 2013). One should note that the 
present paper neglected dynamical effects as appearance of multiple modes, inertial and gyroscopic 



effects. Here it was assumed that the cutting speed is fairly small. Thus for higher speeds and/or the 
results should be recalculated with more sophisticated approach including the dynamical effects.     
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