
 
612. NONLINEAR ANALYSIS OF THE RIPPING HEAD POWER TIME SERIES. 
GRZEGORZ LITAK , ARKADIUSZ SYTA, JAKUB GAJEWSKI, JÓZEF JONAK 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   MARCH 2011. VOLUME 13, ISSUE 1. ISSN 1392-8716 

39 

612. Nonlinear analysis of the ripping head power time  
        series 

 
 

Grzegorz Litaka,1, Arkadiusz Sytab, Jakub Gajewskic, Józef Jonakc 
aDepartment of Applied Mechanics, Technical University of Lublin,  
Nadbystrzycka 36, PL-20-618 Lublin, Poland 
bDepartment of Applied Mathematics, Technical University of Lublin,  
Nadbystrzycka 36, PL-20-618 Lublin, Poland 
cDepartment of Machine Construction, Technical University of Lublin,  
Nadbystrzycka 36, PL-20-618 Lublin, Poland 
1 corresponding author, Fax: +48-815250808;  
E-mail:  g.litak@pollub.pl 
 

(Received  11 November  2010;  accepted 4 February 2011) 
 
 
 
Abstract. We investigate the power of a ripping head in the process of concrete cutting. Using 
nonlinear embedding methods we study the corresponding time series obtained during the 
cutting process. The calculated maximal Lyapunov exponent indicates the exponential 
divergence typical for chaotic or stochastic systems. The recurrence plots technique has been 
used to get nonlinear process statistics for identification and description of nonlinear dynamics, 
lying behind the cutting process.  
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1. Introduction 
 

A cutting process, studied experimentally and described theoretically by Merchant [1] 
in the middle of 20th century, is a highly nonlinear process involving such phenomena as 
friction, impacts and chips breaking. In case of metal cutting, the most important criterion of its 
reliability is the high quality of the final product. In practice one has to achieve a compromise 
between the precision of cutting and cutting costs. Consequently such a process is not designed 
in a perfect way but it is disturbed by various instabilities including dynamical chatter 
vibrations. Recently those vibrations have been investigated [2–8] in the context of chaotic 
motion appearance. Such non-periodic vibrations are very similar to stochastic ones but they 
have the origin in the nonlinear dynamics of cutting. 

Cutting applied to rocks is even more challenging as the machined materials are not 
uniform and brittle. The main purpose in rock cutting is to achieve maximal efficiency [9, 10] 
using a relatively small amount of energy. Those priorities lead to the evolution of tools and, in 
particular, to the technology of multi-tool ripping heads use [11]. In this paper we will present 
the time series of the ripping head power applied to a standard rock. The application of 
Recurrence Plots (RP) enabled us to examine the nonlinear properties of the cutting process. 

The paper is divided into 5 sections. After the present introduction (Sec. 1) we describe 
the experimental stand and present a typical example of time series with a short discussion of its 
properties (Sec. 2). In Sec. 3 we perform the embedding dimension analysis to the studied time 
series. In Sec. 4 we analyze recurrence plots and make the recurrence plots quantification 
analysis. Finally in Sec. 5 we end up with conclusions. 
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Fig. 1. Multi-tool ripping head on the test bed (a) and its scheme (b) with the following specification: 
1 - Machine foundation; 2 - Frame ∅ 1600; 3 - Electric motor P=140 kW; 4 - Connector I; 

5 - Torque meter; 6 - Reduction gear; 7 - Connector II; 8 - Shaft; 9 - Frame II; 10 - Speed indicator 
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2. Experimental stand and results 
 

Here we present the results of experiments performed in the test-rig (Fig. 1a). Such 
experiments are usually conducted to identify the point status of cutting tools in ripping heads 
of headwall combined cutter-loaders. Rapidly changing mining conditions require an adaptive 
control procedure to be applied in this process. The conditions of cutting tools, and especially 
their edges, installed on a multi-tool head are essential in the context of optimization procedure 
[12]. 

 

 
Fig. 2. The measured time series of the power of a ripping head x (a) and the time series of surrogated data 

x~ (b) versus time-like measurement index i. The power x(i) (and also x~ (i)) was expressed in [kW], 
sampling interval was fixed at ∆t = 0.005s while the total number of points for the analysis was N = 6600. 
Note that the corresponding standard deviations do not differ so much as σx = 14.665 kW while 

x~σ  = 

14.688 kW 

 
The ripping head load measured as the supplied power is rapidly changing in a 

complex way. Thus the corresponding cutting process is difficult to describe mathematically. A 
lot of factors can influence the ripping process. The basic group of parameters includes: 
technology and conditions of excavating, ripping head technical parameters, characteristics of 
the rock, constructional features of the tool. The scheme and specification of our test stand are 
presented in Fig. 1b [13]. 

A system with a full control and automation of the excavating process has not been 
developed so far. However, the control process, limited to adjusting the ripping speed to current 
excavating conditions, can be applied. In this process the ripping speed could be estimated 
through particular parameters of the head drive motor signal. Up to now, the operation of the 
ripping head depends only on the operator’s subjective assessments. It is important at a 
significant variance in the optimum combined cutter-loader operation. Monitoring the condition 
of a cutting tool point and the type of a presently installed cutting tool is crucial for the proper 
multi-tool head operation. The system that will potentially allow to assess the status of the 
cutting edges and to identify the cutting tool type, e.g. on account of the face of cut and the tool 
flank, cannot be susceptible to changing qualities of the ripped material [14–16].  

Using the above presented equipment we collected the data of the ripping head power 
during cutting of a standard concrete (Fig. 1). They are presented as time series in Fig. 2a. In the 
first sight one can observe that this time history does not exhibit any periodic oscillations. 
Examining the properties of this representative time series is the main purpose of the current 
analysis. 
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To check nonlinearity of the time series we have applied a surrogate test [17], which is 
based on the Fourier transform 
 

  (1) 
 
where the corresponding amplitude Aj and the frequency ωj are defined respectively. ∆t is the 
sampling interval. 
 

      (2) 

 

 
Fig. 3. Return maps in different scales: (a) data in the whole region and (b) data limited the chosen interval 
(from 10 to 50 kW). Figure (b) shows the noticeable broken reflection symmetry with respect to the 
diagonal line 

 
After adding random passes φj to terms with ωj one can calculate the inverse transform 

 

      (3) 
 
where rj represents a random number while a0 is a constant. 

The results of the above prescripted surrogate test x~ (i) are presented in Fig. 2b. Two 
signals x(i) and x~ (i) (Fig. 2a and b) can be easily compared through estimated statistical 

properties. Here we have calculated standard deviations for both time series (σx and 
x~σ ) and 

observed that they are close to each other. This could mean that our system is influenced by a 
significant noisy term. Note that the surrogate test, which mixes the phases of different 
harmonics in random way is hardly sensitive for noisy systems. It is also possible that the 
examined time series differ more in higher moments. Continuing this discussion on 
nonlinearities in the time series, we have also plotted the return map in Fig. 3. Magnifying the 
scale one can see in Fig. 3b that the diagonal symmetry is barely broken. That could imply the 



 
612. NONLINEAR ANALYSIS OF THE RIPPING HEAD POWER TIME SERIES. 
GRZEGORZ LITAK , ARKADIUSZ SYTA, JAKUB GAJEWSKI, JÓZEF JONAK 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   MARCH 2011. VOLUME 13, ISSUE 1. ISSN 1392-8716 

43 

broken time reversal symmetry, which is an important effect appearing most frequently in 
nonlinear systems [18]. However, this effect albeit noticeable is not very clear in the present 
case. Thus we need another test to conclude about nonlinearity of the examined system. 

On the other hand, the Fourier transform Aj (Eqs. 1-2) is presented in Fig. 4a. Note that 
the spectrum has a typical structure composed of a wide band and free singular frequencies 
related to the natural frequencies and the rotational frequency of the ripping head system (Fig. 
1). Investigating further the statistical properties of the time series we have constructed its 
histogram which is presented in Fig. 4b. Here one can observe that the probability distribution 
is nonsymmetric in respect to horizontal axis. In fact, small power consumptions are more 
probable than higher ones. Clearly it resembles the Poisson distribution probability, which can 
be associated with the existence of some rare events. Naturally, the power is proportional to the 
torque acting on the ripping head. Thus, the increase of it can be related with the stronger 
resistance of the material. To explain the rock cutting process one should also take into account 
the nonuniform structure of rocks and cracks possibilities. 

 

 
Fig. 4. Fourier transform expressed in the inverse of the sampling time unit 1/∆t (∆t = 0.005s) (a) and the 
related histogram of the examined time series x(i) presented in Fig. 2 (b) 

 
3. Embedding properties of the time series 
 

We start with reconstruction of the phase space using the Takens theorem [19]. To 
apply this theorem we had to calculate time delay and embedding dimension. After that we will 
obtain a new time series which preserves topological properties of the initial one. 

According to the Takens theorem [19] the nonlinear time series of single variable xi 
can be represented in the reconstructed phase space as an evolution of the vector field xi 
composed of the current and delayed values of the ripping head power 

 

     (4) 
 

where ∆i is the time delay in sampling units, M is the embedding dimension. To find ∆i we use 
the average mutual information method (AMI) [20–22] 
 

      (5) 
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where for some partition of the ripping head power values interval x ∈ [xmin, xmax] pk is the 
probability to find a time series value in the k-th interval, and pkl is the joint probability that an 
observation falls later into the l-th element and the observation time is given by δi. In Fig. 5a we 
plotted AMI versus corresponding time delay δi. The optimal time delay ∆i = δi is to be 
determined by AMI minimum. In our case ∆i = 8 (Fig. 5a). 
On the other hand, the embedding dimension can be calculated from an analysis of False 
Nearest Neighbors Fraction (FNNF) [22–24,8]. One has to choose the point indicated by xi and 
calculate the distance to its nearest neighbor point j in the m-dimensional space; an Euclidean 
distance is typically used and is written as |xi − xj|m. 
 

 
Fig. 5. The analysis of embedding: (a) Average Mutual Information – AMI versus time delay δi and (b) 
False Nearest Neighbour Fraction – FNNF versus embedding dimension m 
 

 
Fig. 6. Function S (Eq. 8) as a function of time τ. The short straight line indicates a positive slope tendency 
S ≈ 0.185 τ + const (in terms of sampling units), which indicate the positive value of the maximal 
Lyapunov exponent 
 

Iterating both points along the time series we compute the control parameter Qi,m 
defined as 
 

        (6) 
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By comparing the above value to a chosen threshold Qc, we calculate the fraction of cases for 
which Qi,m exceeds the threshold value Qc. The FNNF can then be estimated from the following 
expression 
 

       (7) 
 
where N is the number of vector elements in the vector time series, Θ(x) is the Heaviside step 
function. This so-called fraction analysis is repeated by choosing different values of the 
dimension m. The results of FNNF for varying m are presented in Fig. 5b. FNNF vanish for m = 
5 and this defined the proper embedding dimension M = 5. 

The maximal Lyapunov exponent λ1 describes the rate of divergence of the trajectories 
in the phase space. The most reliable methods for estimating λ1 for systems which can involve 
discontinuities (in our case generated by friction, cracks and impact phenomena) are described 
in [25,26,8]. Here, to calculate λ1 we use the Kantz algorithm [25,20], which is defined in the 
reconstructed phase space. Following this algorithm one considers the representation of the time 
series data as a trajectory in the embedded space xi, to find a close return xn′ to a previously 
visited point xn. By using the distance xn′ − xn as a small perturbation one checks whether the 
perturbation would grow exponentially in time. To estimate the growth of the perturbations, we 
need to compute the average for different observation points n using 
 

     (8) 
 
Here Un ~ εM, being a small parameter characterizing the maximum distance around the point xn 
such that xn′ is in its vicinity (xn′ ∈ Un). The slope of the linear part of S versus time τ curve 
yields the Lyapunov exponent. 
 

         (9) 
 

Using the numerical package by Hegger et al. [22] we have estimated S (Eq.8) as a 
function of time τ (in the sampling time units ∆t). The results of our calculations are presented 
in Fig. 6. The obtained line is monotonous going up and down but for τ > 25 the oscillation 
amplitude decreases considerably. The short straight line in Fig. 6 shows a positive slope 
tendency 
 

         (10) 
 
which indicates the positive value of the maximal Lyapunov exponent λ1 typical for chaotic or 
noisy systems. 
 
4. Analysis of recurrence plots 
 

Recurrence plots (RPs), which were invented by Eckmann et al. [27], were used later 
for identification of nonlinear systems with various possible behaviours [28]. Such plots are 
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constructed from a phase space vectors by spatial proximity analysis of states xi (defined in Eq. 
4). In fact using the above qualitative method for deterministic systems it is possible to classify 
the dynamics of an examined system by its characteristic patterns showing diagonal, vertical or 
horizontal structure of lines [29,30]. The same method applied to an unknown time series is 
capable of distinguishing chaotic and stochastic behavior. A pattern for a stochastic system is 
based on uniform distribution of points in the recurrence plot, while a chaotic system possesses 
structure of lines with finite lengths. On the other hand in a case of the intermittent motion [31], 
a vertical stripe structure is expected [32–35]. 

The recurrence plot can be defined by the following matrix form Rm,ε with 

corresponding elements ε,
,
m

jiR  [36–38] 

 

        (11) 
 
having 0 and 1 elements to be translated into the recurrence diagram as an empty place and a 
black dot respectively. 

Using the proper embedding parameters analyzed in the previous section we have 
plotted the corresponding recurrence plot (in Fig. 7a) for the examined time series. Figures 7b-c 
show the corresponding RPs for the surrogated and autoregressive time series. 

The autoregressive time series have been calculated by using the following formula 
 

     (12) 
 
where fi are random numbers with Gaussian distribution of zero mean and the unit variance. In 
our calculations we used p = 100. For the best least square fit to the original time series x(i) we 
obtained coefficients Bi, (i = 0, ..., 99) and presented them in Fig. 8. One can see that the first 
four coefficients (|Bi| > 0.4, i = 0, ..., 3) are the most important in the algorithm (Eq. 12). 

For comparison we present the RP obtained for the case of random number series fi 
(Fig. 7d). Note that the black points in that RP are distributed uniformly. In contrast to the 
uniform cover for random numbers (Fig. 7d) the other three time series Figs. 7a–c create 
characteristic patterns. However the original pattern for the experimental time series is partially 
destroyed. Especially, the vertical line structure for the surrogated data (Fig. 7b), and in the 
system simulated by the phenomenological auto-regression model (Eq. 12) with a random 
component (Fig. 7c) look differently. 

Closer inspection to distinguish diagonal and horizontal lines variation may be 
performed by using the Recurrence Quantification Analysis (RQA). This method was invented 
by Webber and Zbilut [29] and later developed by Marwan [36,37]. 

Starting with the RQA analysis we define the recurrence rate RR: 
 

      (13) 
 
which determines the black dots fraction in the diagram. w = 1 denotes the Theiler window used 
to exclude diagonal points from the above summation (Eq. 13). 

Furthermore the RQA can be used to identify vertical or diagonal lines through their 
maximal lengths Lmax, Vmax for diagonal and vertical lines respectively. In its frame, the RQA 
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enables to perform probability p(l) or p(v) distribution analysis of lines according to their length 
l or v (for diagonal and vertical lines). Practically, they are calculated 

 

        (14) 
 
where y = l or v depending on diagonal or vertical structures in the specific recurrence diagram. 
Pε(y) denotes unnormalized probability for a given threshold value ε. In this way Shannon 
information entropies (LENTR and VENTR) can be defined for diagonal and vertical lines 
collections 
 

       (15) 
 

       (16) 
 

Other properties as determinism DET and laminarity LAM and the trapping time TT are 
also basing on probabilities Pε(x). 

All the series x(i), x~ (i), xAR(i) and fi have been renormalized by the square deviation 
and RR = 0.01 (Tab. 1). 
 

       (17) 
 

       (18) 
 

       (19) 
 
where lmin and vmin denotes minimal lengths of diagonal and vertical lines which should be 
chosen for a specific dynamical system. 

 
Table 1. Summary of recurrence quantification analysis (RQA) for ’experimental’, ’autoregressive’ and 
’surrogate’ data. w = 1 (Theiler window) and lmin = 2, vmin = 2. Note, for all cases RR is the same. 
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Fig. 7. Recurrence plots of the experimental data for the ripping head power: the experimental (a), 
surrogated (b) and autoregressive (c) time series and for the Gaussian noise series fi(d) 

 

 
Fig. 8. Autoregressive coefficients Bi (Eq. 12) for p = 100 
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Determinism DET is the measure of the predictability of the examined time series, 
gives the ratio of recurrent points formed in diagonals to all recurrent points. Note in a periodic 
system all points would be included in the lines. On the other hand laminarity LAM is a similar 
measure, which corresponds to points formed in vertical lines. This measure is telling about 
dynamics behind sampling points changes. For small point to point changes the consecutive 
points form a vertical line. Finally, trapping time TT refers the average length of vertical lines 
measuring the time scale (in terms of sampling intervals) of these small changes in the 
examined time history. 

To express the quantitative differences between presented RPs (Fig. 7a-c) we have 
performed calculations of all the specified quantities (Eqs. 13,15–19) for our time series and the 
surrogate (Figs. 2a and b) as well as for the autoregressive simulated series and included them 
into Tab. 1. 

Note that determinism DET of the ’autoregressive’ time series has the largest value. It 
is because of a liner autoregressive model (Eq. 12) and a large number delays p = 100. 
Furthermore, LAM is the largest for the experimental data. This implies some vertical structure 
of the system dynamics. The parameters LAM, VENTR and TT (all are the largest for the original 
time series) are also closely related to vertical structure. Such a characteristic vertical structure 
appears for the intermittency phenomenon [39]. Evidently, two other examined time series 
(’surrogate and ’autoregressive’) cannot reveal this phenomenon. Note also that the largest Lmax 
= 3611 is for the experimental time series. The huge difference in Lmax could be interpreted as 
the strong correlation between neighboring points. The other parameters Vmax and LENTR reach 
the medium value for the original time series. Interestingly, LENTR has clearly the largest value 
for the autoregressive time series, informing that the noisy component fi present in Eq. 12 can 
dominate here. On the other hand Vmax is comparable to all three examined cases. 
 
5. Summary and conclusions 
 

We have investigated the power of a ripping head in its working conditions. Our 
results indicate that the system is nonlinear. This was visible in time series (Fig. 2a) analysis in 
terms of the return map (Fig. 3). The corresponding Fourier transform course (Fig. 4a) and the 
histogram graph (Fig. 4b) provided some initial insight into the noisy statistic properties of this 
process. Interestingly the surrogate test showed small differences in terms of square deviations. 
However by using some more sophisticated measures, given by recurrence plots quantification 
measures, we obtained obvious differences between the original and surrogated time series (see 
Tab.1). Finally, the examined process appeared to be completely different from the noise having 
some specific correlations shown also by recurrence properties (Fig. 7, Tab. 1). Using 
embedding methods we estimated a positive value of the maximal Lyapunov exponent 
demonstrating the exponential divergence typical for chaotic or stochastic systems (Fig. 6). In 
summary we conclude that the recurrence plots methods appeared to be a useful tool in 
characterizing this type of systems. 

The presented methods based on the embedding theory and RQA enable to identify the 
complexity of the experimental signal and could be utilized in future development of the control 
procedure for the ripping head operation. One of advantages of the recurrence plots application 
is that they do not need long time series. Interestingly, this technique could be easily applied for 
monitoring of sudden increases of supplied power [16]. Particularly, the vertical lines 
parameters LAM, VENTR and TT for the original time series are the largest implying some 
specific behaviour of the system. This effect indicates that the dynamics of the investigated 
system is complex. It is also clear that apart from stochastic noise the fractal structure related to 
the intermittency phenomenon can be present. 
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