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Abstract

The inverted elastic beam is proposed as an energy harvester. The beam has a

tip mass and piezoelectric layers which transduce the bending strains induced by

the stochastic horizontal displacement into electrical charge. The efficiency of this

nonlinear device is analyzed, focusing on the region of stochastic resonance where

the beam motion has a large amplitude. Increasing the noise level allows the motion

of the beam system to escape from single well oscillations and thus generate more

power.
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1 Introduction
Recently, the demands on portable devices, self-powered wireless sensors and simi-

lar applications that currently require rechargeable batteries, have increased considerably
[1, 2, 3, 4]. Vibration energy is one of the candidate technologies, in competition with
other possibilities such as photo-voltaic or thermal gradient approaches [6, 7]. The effec-
tiveness of devices based on harvesting vibration energy and their availability are con-
tinuously growing [5]. Ambient mechanical vibrations can be converted to the electrical
energy using electromagnetic, piezoelectric, and electrostatic methods [1, 5, 6]. Piezoelec-
tric transducers can be easily integrated into elastic multilayer cantilever beams; Priya
[8] reviewed potential piezoelectric materials for energy harvesting and discusses various
prototypes.

The main advantage of piezoelectric devices, compared to electrostatic and electro-
magnetic devices, is their high power output for a given device volume and excitation
[8, 7]. Although not suitable for generating high power levels, they are very suitable for
applications to small electronic devices. The main issue with this form of harvester is
the source of ambient energy. The classic approach is to tune the mechanical part of the
harvester to resonate; this approach is good for narrow band excitations but performs
poorly in off-resonance conditions or with broadband ambient excitation [1, 4]. Unfortu-
nately, the small levels of energy available off-resonance is often insufficient and a tuning
process has to be employed. Ambient excitation forces, such as wind and road traffic
motion, often provide changeable conditions characterized by fluctuating frequency and
amplitude, or by broadband excitation. Thus, the ideal device is a broadband harvester
which is not critically sensitive to the specific frequency or amplitude of excitation [6, 7].
One approach is a nonlinear mechanical resonator with a dual well potential, obtained
using a magnetic field or special prestressed conditions [9, 10, 11, 12].

Recently, Friswell at al. [13] studied a piezoelastic system consisting of a cantilever
beam with a tip mass that was mounted vertically and harmonically excited in the trans-
verse direction at its base. For a relatively large tip mass the vertical position was unstable
and the beam buckled, giving a double well potential due to gravitational loading. The
deterministic model was simulated and validated using an experimental device with three
different tip masses, representing three interesting cases: a linear system; a low natural
frequency, non-buckled beam; and a buckled beam. The most practical configuration ap-
peared to be the pre-buckled case, where the proposed system has a low natural frequency,
a high level of harvested power, and an increased bandwidth over a linear harvester.

In the present paper we follow the above mentioned model (Friswell at al. [13]) and
complete the analysis by simulating an inverted beam excited by random noise. Similar
approaches to a broadband piezoelastic device using random noise excitation have been
discussed by [11, 14, 15, 16, 17, 18, 19, 20]. Note also that the nonlinear system considered
in this paper bends due to the gravitational field (Fig. 1), in contrast to the magnetic
systems discussed in previous papers [11, 14, 15, 16, 17, 18, 19, 20]. More recent analysis
on nonlinear beam system vibrations can be found in [21, 22, 23].
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Figure 1: The model of the inverted beam with a tip mass mt with its horizontal and
vertical displacements v and u. L is the length of beam, while x is the axis oriented along
the beam. g represents the gravitational acceleration while, y denotes the kinematic
horizontal excitation.

2 Equations of Motion
Figure 1 shows a schematic of the system considered, which consists of an inverted

beam with one end fixed to the moving base and other loaded by a tip mass, mt. The
equation of motion has been derived using Lagrange’s method. An arbitrary point at
the beam denoted by mass element dm at distance x from the oscillating base and the
point mass mt were considered, which undergo a flexible body deflection to a new position
due to the base excitation. The mass element of the beam dm undergoes a horizontal
displacement y + vdm and a vertical displacement (−udm) and a rotation of φ of the tip
beam point (Fig. 1). Note that in our calculations, the effect of rotary inertia of the beam
mass, φdm, was neglected.

The kinetic energy of the system is [13, 24, 25]

T =
1

2
ρA

∫

m

[(

v̇dm(x, t) + ẏ(t)
)2

+ u̇dm(x, t)2

]

dx

+
1

2
mt

[(

v̇(t) + ẏ(t)
)2

+ u̇(t)2

]

+
1

2
I0φ̇

2 (1)

and the potential energy arising from the strain in the elastic beam, and gravity terms
from the beam and tip mass, is

Π =
1

2
EI

∫ L

0

κ(x, t)2dx+ gρA

∫

m

udm(x, t)dx+mtgu(t). (2)

A single degree of freedom model of the deflection of the beam is considered, where

vdm(x, t) = v(t)ψ(x) (3)
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Table 1: System parameters.
symbol and value description
L = 0.2m length of the beam
mt = 0.038kg tip mass
ρ = 7850kg/m3 density of the beam mass
A = 0.000004m2 cross section area of beam
E = 210GPa Young’s modulus
I = 2.15 × 10−14m4 geometrical moment of inertia
I0 = 1144.4 × 10−3 kgm2 mass moment of inertia
y kinematic displacement of the base
Cp = 38.9nF capacitance of the piezoelectric patches
R = 50kΩ load resistance
Lp = 28mm active length of piezoelectric layers
bb = 15mm beam width
hb = 2.5mm beam thickness
hp = 300µm piezoelectric layers thickness
e31 = −5.157 C/m2 piezoelectric constant

Table 2: Effective parameters in SI units (see Eqs. (4) - (7)); the corresponding definitions
can be found in the Appendix.

N1 N2 N3 N4 N5 N6 N7 N8 N9

0.0453521 0.072676 1.3801 6.1685 7.85398 380.504 5867.85 180979. 0.36685

for some known function ψ(x) that approximates the deformation in the beam. By ne-
glecting terms higher than third order the horizontal deflection of the beam udm may be
written in terms of the primary degree of freedom v. Thus the kinetic and potential ener-
gies may be written in terms of v and Lagrange’s method applied to derive the equation
of motion of the beam-mass system [13]

[

mt + ρAN1 + I0N
2

5
+

(

ρAN3 +mtN
2

4
+ I0N

4

5

)

v2

]

v̈

+
[

ρAN3 +mtN
2

4
+ I0N

4

5

]

vv̇2

−

[

g
(

mtN4 + ρAN9

)

− EI
(

N6 + 2N7v
2

)]

v = −

[

mt + ρAN2

]

ÿ, (4)

where ÿ is the acceleration of the base of the beam and is assumed to be stochastic and
of the form

ÿ = Γ(t), (5)

where Γ(t) denotes the stochastic factor. The other parameters used are defined in Tables
1 and 2.
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3 The Coupled Piezoelectric Model
Using the derivation of the coupled electro-mechanical model provided by the authors

[13], the equation of motion combined with the electrical equation becomes
[

mt + ρAN1 + I0N
2

5
+

(

ρAN3 +mtN
2

4
+ I0N

4

5

)

v2

]

v̈

+
[

ρAN3 +mtN
2

4
+ I0N

4

5

]

vv̇2

−

[

g
(

mtN4 + ρAN9

)

− EI
(

N6 + 2N7v
2

)]

v −DU = −

[

mt + ρAN2

]

ÿ

CpU̇ +
U

R
+Dv̇ = 0, (6)

where U is the voltage across the load resistor connected to the piezoelectric patch, Cp

is the capacitance of the piezoelectric patches and R is the load resistance. Two piezo-
electric patches are attached to the beam and connected in parallel. The constant for the
electromechanical coupling is given by

D = e31bp(hp + hb)

∫ Lp

0

ψ′′(x)dx = e31bp(hp + hb)ψ
′(Lp), (7)

where hb is the beam thickness, hp is the piezoelectric layer thickness, bp is the piezoelectric
layer width, Lp denotes active length of piezoelectric layer, and e31 is the piezoelectric
constant.

4 Numerical Results and Discussion
Based on Eq. (6), numerical simulations of the beam system with attached piezoelec-

tric layers (Fig. 1) have been performed. We assumed a kinematic excitation, where ÿ
was expressed as the random noise factor Γ(t) (Eq. (5)). In the simulations two different
kinds of noise were used; Gaussian noise with a normal distribution (ND), and noise with
a uniform distribution (UD). The results of the simulations are presented in Figs. 2a-d.

Figure 2a shows the displacement signal to noise ratio σv/σF (in terms of the corre-
sponding standard deviations) versus the input noise represented by σF for a tip mass of
mt=0.038kg. For both noise distributions (normal (ND) and uniform (UD)) one can ob-
serve a clear maximum around σv/σF = 0.25. This maximum corresponds to a stochastic
resonance [26], which gives the largest amplitude oscillation for a given excitation level,
and reflects the transition in the system response from single potential well oscillations to
double well vibration characteristics with hopping between the two potential wells. One
can note that for the normal noise excitation the transition happens for a smaller noise
intensity, σF , and this because of the long tails of the Gaussian white noise distribution.
Such a tail can generate much larger accelerations than for the bounded uniform noise
case. Consequently, in the region of fairly small σv, the value of σv/σF is slightly larger for
ND than for UD. The variance of the voltage output, U (Fig. 2b), increases considerably
after σF passes the stochastic resonance case.

Additionally, we plotted the number of hops between the potential wells (Fig. 2c).
As mentioned earlier these are strictly connected to the appearance of the stochastic
resonance. Note that the appearance of a larger number of hops in Fig. 2c coincidences
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Figure 2: The displacement signal to noise ratio σv/σF versus σF for tip mass mt=0.038kg
(a), the variance of the generated voltage U for the corresponding tip mass mt (b), the
number of hops (c) and the mean of displacement (d). Two different kinds of noise have
been used: normal (ND) and uniform distributions (UD). The simulation time period was
fixed as t ∈ [0, 10800s], while the time step was δt = 0.01s. The initial time interval for
each simulation [0, 7200s] was neglected as a transient in the statistical estimation of the
standard deviation σF , the number of hops and mean value of displacement < v >. The
initial conditions for each noise level were [v, v̇, U ]|t=0 = [0.1042m, 0, 0]. Each point on the
figures is an average of 10 different noise realizations.

with the maxima in Fig. 2a. The effect of this solution bifurcation from single to double
well oscillations is also visible in the estimated mean value of displacement < v > (Fig.
2d). A displacement mean of < v >≈ 0.11m means that the solution oscillates around
the beam equilibrium v0 ≈ 0.1042m, where v0 can be found from the minimum of the
potential energy (Eq. (2)) as

v0 =

√

g(mtN4 + ρAN9) − IEN6

2EIN7

, (8)

while any other value corresponds to cases with hopping (for σv > 0.25). The positive
< v > mimics the asymmetry in the time series with respect to the horizontal reflection
through v = 0. This asymmetry is related to the limits of the simulation time, t ∈ [0 :
3600], and the assumed initial conditions, v0 > 0.

To illustrate the system dynamics, examples of displacement and voltage time series,
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Figure 3: Simulation results for σF = 0.200N and tip mass mt = 0.038kg, with Gaussian
white noise (ND) excitation Γ(t): displacement time series (a), phase portrait (b), voltage
time series (c), hops from the time simulation (d). Note that the number of hops is 0 as
the solution is localized around the buckled beam equilibrium v0.

displacement-velocity phase portraits, and the number of hops between potential wells,
were plotted for the solutions with selected noise levels (for the case of ND) in Figs.
3 to 5. In Fig. 3, σF = 0.200N and the solution was reduced to a single potential
well oscillation (Fig. 3a-b). In contrast Figs. 4a-b (for σF = 0.320N) and 5a-b (for
σF = 0.528N) clearly show the double well oscillations with a fairly large amplitude. The
corresponding simulation time (t ∈ [0, 7200s] was longer than that used for the results
presented in Fig. 2. The associated number of system hops is illustrated in Figs. 4d and
5d. Note that the hops are intermittent for intermediate values of the excitation noise
level σF = 0.320N (Fig. 4d). In the case of the stronger noise excitation σF = 0.528N
(Fig. 5d) the hops appear to be fairly regular. As concluded from Fig. 2b, the output
power strongly increases after passing σF = 0.25. This is also illustrated by the increasing
voltage output in Figs. 3c, 4c and 5c, where the corresponding U(t) time series are plotted
for σF = 0.200N, 0.320N, and 0.528N respectively. These results show an increase in the
voltage output.
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Figure 4: Simulation results for σF = 0.320N and tip mass mt = 0.038kg, with Gaussian
white noise (ND) excitation Γ(t): displacement time series (a), phase portrait (b), voltage
time series (c) obtained through the single noise realisation. Fig. 4d presents the number
of hops between the potential wells. Note that for smaller σF (Fig. 3d) the number of
hops was 0.

5 Conclusions
We have analyzed the piezoelectric harvester based on the elastic inverted beam me-

chanical resonator. Applying the stochastic kinematic excitation to the base we analyzed
the voltage output. By increasing the noise level we reported the appearance of the
stochastic resonance phenomenon. The simulated results are characterized by relatively
large variability (Fig 2a). As the results are averaged over ten different noise realizations,
this variability occurs in spite of a single set of initial conditions used in all simulations
and shows the existence of multiple attractors in the examined system [13].

As expected from the previous studies [18], the effects of both kinds of noise (ND and
UD) are very similar.

It should be noted that for realistic situations the parameters of the mechanical res-
onator (for instance the tip mass value mt) can be adjusted to ensure the system is
operating in the vicinity of stochastic resonance. In that case the displacement signal to
ambient noise ratio has the highest value and the whole system is characterized by the
optimum performance. Our experiments on the system with stochastic excitation are in
progress and the results will be reported soon.
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Figure 5: Simulation results for σF = 0.528N and tip mass mt = 0.038kg, with Gaussian
white (ND) noise excitation Γ(t): displacement time series (a), phase portrait (b), voltage
time series (c), hops from the time simulation (d).
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Appendix
To build the equations of motion (Eq. 4) we have to evaluate a number of integrals

in Eqs. (1) and (2). These can be easily calculated following [13] and also [24, 25], where
the deflection model is assumed to be

ψ(x) = 1 − cos
(πx

2L

)

,

After substituting the above expression into Eqs. (1) to (3), and some lengthly math-
ematical manipulations [13, 24, 25], we obtain the constants N1 to N9 (see Eq. 4) as

N1 =

∫ L

0

ψ(x)2dx = L
(3

2
−

4

π

)

, N2 =

∫ L

0

ψ(x)dx =
L

π
(π − 2),

N3 =

∫ L

0

(

∫ x

0

ψ′(x)2dx
)2

dx =
π2

384L
(2π2

− 9), N4 =

∫ L

0

ψ′(x)2dx =
π2

8L
,

N5 = ψ′(L) =
π

2L
,

N6 =

∫ L

0

ψ′′(x)2dx =
π4

32L3
, N7 =

∫ L

0

ψ′′(x)2ψ′(x)2dx =
π6

512L5
,

N8 =

∫ L

0

ψ′′(x)2ψ′(x)4dx =
π8

4096L7
, N9 =

∫ L

0

(

∫ x

0

ψ′(x)2dx
)

dx =
1

16
(π2

− 4),

where ψ′(x) is the derivative dψ(x)/dx.
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