
EPJ manuscript No.
(will be inserted by the editor)

Stationary response of nonlinear magneto-
piezoelectric energy harvester systems under
stochastic excitation

Wolfram Martens1,a, Utz von Wagner1, and Grzegorz Litak2

1 Chair of Mechatronics and Machine Dynamics, TU Berlin, Einsteinufer 5 10587 Berlin,
Germany

2 Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36,
20-618 Lublin, Poland

Abstract. Recent years have shown increasing interest of researchers in
energy harvesting systems designed to generate electrical energy from
ambient energy sources, such as mechanical excitations. In a lot of cases
excitation patterns of such systems exhibit random rather than deter-
ministic behaviour with broad-band frequency spectra. In this paper,
we study the efficiency of vibration energy harvesting systems with
stochastic ambient excitations by solving corresponding Fokker-Planck
equations. In the system under consideration, mechanical energy is
transformed by a piezoelectric transducer in the presence of mechanical
potential functions which are governed by magnetic fields applied to the
device. Depending on the magnet positions and orientations the vibrat-
ing piezo beam system is subject to characteristic potential functions,
including single and double well shapes. Considering random excita-
tion, the probability density function (pdf) of the state variables can
be calculated by solving the corresponding Fokker-Planck equation. For
this purpose, the pdf is expanded into orthogonal polynomials specially
adapted to the problem and the residual is minimized by a Galerkin
procedure. The power output has been estimated as a function of basic
potential function parameters determining the characteristic pdf shape.

1 Introduction

The usage of mechanical energy harvesting systems (EH-sytems) exploiting ambi-
ent vibrations has become a plausible solution for powering small devices and small
amount energy storage following the frequency broad band concept [1–4]. This ap-
proach is motivated by variable or even random ambient conditions of excitation
and consequently a fairly wide range of excitation frequencies. Nonlinear systems are
characterized by declined frequency-amplitude characteristics which naturally cover
larger ranges of frequencies. Different ways of including nonlinear elements have been
discussed [4] including the application of additional magnets [5,6], gravity effects
[7] and stoppers with vibration amplitude limitation [8,9], as well as impact con-
figurations [10]. The key idea lies in the exploitation of nonlinear system dynamics
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in order to improve the efficiency of energy harvesting systems in a wider range of
frequency. Simultaneously, energy harvesting from random energy sources has been
investigated. Stochastically excited energy harvesting systems, firstly proposed by
Cottone et al. [11], were intensively studied in a number of recent papers includ-
ing Monte Carlo simulations [12–14] and experimentally based approaches [15,16].
All these investigations focussed on systems with double well potentials with special
interest in the dynamical response with increasing amplitudes caused by the noise-
induced escape phenomenon. The computation of probability density functions by
solution of corresponding Fokker-Planck equations [17] has been proposed [18,19].
However, the considered energy harvesting systems were restricted with respect to
the investigated potential functions [18] or alternatively to the electrical circuit mod-
els [19]. The present paper attempts to overcome these deficiencies by application of
a method of solving multi-variable Fokker-Planck equations developed in the past 15
years [20–23], which has already been used to compute first results in the context
of energy harvesting systems [24]. The method is applied to problems considered in
previous works using Monte Carlo simulations [12,14]. In our opinion, the proposed
method has a large potential for the very fast investigation of randomly excited energy
harvesting problems and could allow for the usage of optimization procedures. As a
first step in this direction, a systematic investigation of the influence of the potential
shape (to be influenced by the position of the magnets) on the power output is carried
out.

2 Magneto-piezoelectric energy harvester model

We consider the dynamics of a magneto-piezoelectric energy harvester as shown in
Fig. 1 (see [5]).
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Fig. 1. Magneto-piezoelectric energy harvester [12]

The lumped-parameter system dynamics are modelled by the equations of motion

ẍ+ γẋ+ U ′(x)− χv =F (t) (1)
v̇ + λv + κẋ =0, (2)

where x denotes the dimsensionless displacement of the beam tip and v denotes the
dimensionless voltage across the load resistor. U ′(x) = ∂

∂xU(x) describes a conser-
vative force field defined by an arbitrary (stable) potential function U(x) in the dis-
placement. γ denotes dimensionless linear damping, χ the dimensionless piezoelectric
coupling term in the mechanical equation, κ the dimensionless piezoelectric coupling
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term in the electrical equation, λ ∝ 1/RlCp the reciprocal of the dimensionless time
constant of the electrical circuit, Rl the load resistance and Cp the capacitance of the
piezoelectric material. The force F (t) is proportional to the base acceleration of the
device and is modelled by Gaussian white noise ξt, with mean and variance equal to
0 and 1, respectively. The intensity of the force F (t) is characterized by σF , namely

Ft = σF ξt. (3)

After introducing the notation: X1,t = x, X2,t = ẋ, and X3,t = v, the system of
equations (1-3) can be written as a vector stochastic Itô equation

dXt = f(t,Xt)dt+ G(t,Xt)dW, (4)

where

Xt :=

X1,t

X2,t

X3,t

 (5)

and

f(t,Xt) :=

 X2,t

−U ′(X1,t)− γX2,t + χX3,t

−κX2,t − λX3,t

 , (6)

G(t,Xt) :=

 0
σF
0

 . (7)

Capital letters with subscripts t (e.g. X1,t) indicate stochastic processes with respect
to time.

3 Weak formulation of the Fokker-Planck-equation

The statistical behaviour of a stochastic process (Eq. 4) can be described by its
probability density function (pdf) p(x, t), which is a solution of the corresponding
Fokker-Planck-equation (FPE)

∂

∂t
p(x, t) =−

d∑
i=1

∂

∂xi
{p(x, t)fi(x)}+

1
2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
{p(x, t)Bij(x)} , (8)

with B(x) = GGT .
In the context of EH-systems as described above we are primarily interested in

the long-term system behaviour and thus stationary pdfs p(x). These functions are
solutions of the stationary FPE, i.e. (Eq. 8) with ∂

∂tp(x, t) = 0. In our case, f(x)
can be taken from (Eq. 6) and B(x) = GGT from (Eq. 7). Exact solutions of the
stationary FPE are known only for very limited classes of problems, so that pdfs
of general nonlinear systems are commonly computed with a variety of numerical
methods. Ref. [23] demonstrates how the expansion of approximate solutions can
decrease the numerical effort of solving the FPE, allowing for the computation of pdfs
for comparably high-dimensional systems in a considerably shorter amount of time
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usually needed by Monte-Carlo simulations. Given an approximate solution p0(x) of
the stationary FPE, an improved solution

pN (x) = kN (x)p0(x) (9)

is computed by constructing a correction function

kN (x) =
∑
n∈N

cnPn(x) (10)

from (generally multivariate) orthogonal polynomials Pn(x) in the state variables
x1, x2, · · · . The unknown expansion coefficients cn are obtained in the sense of a
Galerkin-method by weak formulation of the FPE,∫

· · ·
∫
RN (x)Pj(x)dx1 · · · dxd = 0, for all j ∈ N, (11)

where RN (x) denotes the residual of the stationary FPE for pN (x),

RN (x) =−
d∑
i=1

∂

∂xi
{pN (x)fi(x)}+

1
2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
{pN (x)Bij(x)} . (12)

This approach has proven to be particularly efficient for high-dimensional systems
where p0(x) is given as the product of univariate pdfs in the state variables

p0(x) = p
(1)
0 (x1) · · · p(d)

0 (xd), (13)

leading to correction functions of the form

kN (x) =
∑
n∈N

cnPn(x)

=
N1∑
n1=0

· · ·
Nd∑
nd=0

cn1···nd
P (1)
n1

(x1) · · ·P (d)
nd

(xd). (14)

4 Finding approximate solutions for EH-systems

4.1 Decoupled mechanical system

In order to obtain approximate solutions to (Eq. 1) and (Eq. 2) as the first step of
the proposed method we start by looking at the mechanical part of the system, (Eq.
1), neglecting the effect of the electrical circuit (Eq. 2) on the mechanical subsystem,
i.e. χ ≈ 0. The resulting equation of motion describes a 1-dof oscillator with linear
damping under white noise excitation

Ẍ1,t + γẊ1,t + U ′(X1,t) =σF ξt. (15)

The pdf for systems of this form (in the stationary case, ∂p/∂t = 0) is found analyt-
ically and reads

px1x2(x1, x2) =px1(x1)px2(x2)

=c1 exp
(
− 2γ
σF 2

U(x1)
)

1
σ2

√
2π

exp
(
− 1

2σ2
2
x2

2

)
, (16)
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where x1 := x, x2 := ẋ, like above. px2(x2) is a normal distribution with mean µ2 = 0
and variance σ2

2 = σF
2

2γ , c1 is a normalization constant such that∫ ∞
−∞

px1(x1)dx1 = 1, (17)

which is computed numerically for specific U(x). Apart from the fact that, according
to (Eq. 16), x1 and x2 are independent for such systems it is worthwhile to note
that the (Gaussian) pdf of the velocity, px2(x2), is not affected by the shape of the
potential function, U(x), but fully determined by the linear damping coefficient γ and
the excitation intensity σF , which is in accordance to [19] for white noise excitation.

4.2 Electrical circuit dynamics

The problem in finding a decent estimate for the voltage pdf px3(x3) lies in the
fact that, even for χ = 0 in Eq. 1 (no recoupling of the electrical dynamics on the
mechanical system), px3(x3) is affected by the potential function U(x) (as opposed
to px2(x2)), although the displacement x1 does not appear in the electrical circuit
equation (Eq. 2).

This is easily verified for the case of linear restoring forces, i.e.

Ulin(x) =
1
2
αx2, α > 0, (18)

where the system response is Gaussian with zero mean and covariance matrix K.
The elements of the covariance matrix represent the second order moments of the
random vector X, i.e.

Kij = 〈XiXj〉, (19)

where 〈·〉 denotes the expected value of some random variable. K is found as a solution
of the matrix equation [25]

AK + (AK)T = −GGT , (20)

where A represents the linear system dynamics

A =

 0 1 0
−α −γ χ
0 −κ −λ

 (21)

and G is as in Eq. 7. Note that K for the examined system (Eqs. 1-2) is not a diagonal
matrix, i.e. the system states are correlated.

The voltage variance σ2
3 := 〈X2

3,t〉 = K33 can be evaluated analytically and yields

σ2
3 =

κ2σF
2

2 (αγ + (γ + λ) (χκ+ γλ))
, (22)

which is a function of the restoring force parameter α in the potential function (Eq.
18). We will restrict U(x) to functions of the form

U(x) =
1
2
αx2 +

1
4
βx4, β > 0, (23)
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so that U(x) is monostable for α ≥ 0 (x01 = 0) and bistable for α < 0 (x02 = ±
√
−αβ ).

Note that for potential functions as in Eq. 23, the mechanical oscillator (Eq. 15)
describes a Duffing-oscillator.

Even for the fairly narrow restriction we impose on U(x) we are no longer in
a position to analytically compute the voltage variance, even for χ = 0. In order to
obtain estimates for px3(x3) we will instead consider the dynamics of locally linearized
systems around the single stable equilibrium position x01 = 0 (α ≥ 0) or the two stable
equilibrium positions ±x02 (α < 0). Instead of Ulin(x) from Eq. 18 we set

U∗lin(x) =
1
2
α∗x2, (24)

where

α∗ =
∂

∂x
U ′(x)

∣∣∣∣
x=x0i

=
{

α, α ≥ 0
−2α, α < 0, (25)

yielding a Gaussian voltage pdf estimate with variance σ∗3
2 according to Eq. 22. This

estimate will yield good results for α � 0 (the system oscillates around the stable
equilibrium x01 = 0 with dominating linear behaviour) as well as for α � 0 (the
system oscillates around either one of the two stable equilibria ±x02 with dominating
linearized behaviour, only rarely switching between the two potential wells). Note
however that, even for α ≈ 0, (Eq. 22) yields a finite estimate for the voltage variance
σ∗3

2, so that the proposed approach is applicable for arbitrary α.

x

U(x)
U ′(x)

α∗x

(a) Monostable system (α > 0)

x

U(x)

U ′(x)
α∗x + c

α∗x− c

(b) Bistable system (α < 0)

Fig. 2. Schematic plots of monostable and bistable potential functions and local linearization
for α > 0 (a) and α < 0 (b).

Figure 2 shows the shape of the potential functions for monostable (Fig. 2(a))
and bistable Fig. 2(b) systems, as well as the resulting linearized restoring force laws
according to Eq. 25.

In addition to Eq. 16 we thus obtain a Gaussian approximate pdf for the voltage
(here v = x3),

px3(x3) =
1

σ∗3
√

2π
exp

(
− 1

2σ∗3
2x

2
3

)
, (26)

so that the system’s approximate joint pdf is written as a decoupled pdf of the form

px1x2x3(x1, x2, x3) = px1(x1)px2(x2)px3(x3). (27)

According to Eq. 9 we set

p0(x) = px10(x1)px20(x2)px30(x3) (28)
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(a) FPE-solution (Ni = 6)
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(b) Monte-Carlo-simulation

Fig. 3. Two-dimensional marginal pdfs for bistable system with α = −0.4, β = 1. The
remaining system parameters in Eqs. (1-3) read σF = 0.4, γ = 2.0, β = 1.0, χ = 0.2,
λ = 1.0, κ = 0.5.

and

kN (x) =
N1∑
n1=0

N2∑
n2=0

N3∑
n3=0

cn1n2n3P
(1)
n1

(x1)P (2)
n2

(x2)P (3)
n3

(x3). (29)

Application of the Galerkin-method described above efficiently yields system pdfs
for the considered mechanical EH-system.

Figure 3 shows the two-dimensional marginal pdf px1x3(x1, x3) in the displacement
x1 and the voltage x3 for α = −0.4, β = 1 as computed with the Galerkin-method
(Fig. 3(a)) and through Monte-Carlo-simulation (Fig. 3(b)).

5 Evaluation of potential function shape with respect to voltage
output

EH-systems are designed to yield maximal electrical power outputs given some me-
chanical excitation. In the investigated model the electrical circuit dynamics are mo-
delled by a constant electrical resistance Rl which is interpreted as the minimal model
of an applied load consuming the electrical energy generated by the energy harvester.
The electrical power P evaluates to

P = vi =
1
Rl
v2, (30)

(i denotes the electrical current) so that the expected value of the output power is
proportional to the voltage variance σ3

2,

〈P 〉 ∝ σ3
2. (31)

Accordingly, the goal is to design the EH-system in such a way that σ3
2 becomes a

maximum.
The voltage variance for the linear system (Eq. 22) suggests that α should be as

small as possible, which obviously contradicts the need for α to be > 0 for the (linear)
system to be stable. However, allowing for the restoring force law to be nonlinear,
including the possibility of bistable potential functions, α may be varied in a larger
range in order to increase σ3

2.
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Fig. 4. Voltage output variance for varying α (β = 1, σF = 1), computed by solution of the
FPE. Characteristic potential shapes U(x) are illustrated for α = −1.5, 0, 3.5, respectively.
The remaining system parameters in Eqs. (1-3) are the same as in Fig. 3.

The Galerkin-method described above allows for the efficient computation of
system pdfs and thus resulting voltage output variances. Figure 4 shows σ2

3 for dif-
ferent α, as computed with the described method (based on Eqs. (16) and (26)). As
can be expected from the linear system variance (Eq. 22), σ3

2 decreases for α � 0
(quasi-linear oscillation around x01 = 0 with large restoring term α) and α � 0
(quasi-linear oscillation around either of the two equilibria ±x01 with large restoring
term α∗).

As can be seen, there is an optimal choice of α between −1 and 0. In fact, moder-
ately negative α, implying two stable equilibrium positions with frequent transition
from one of the two potential wells to the other, leads to a maximum expected out-
put voltage. Note that the optimal α-value further decreases for increasing excitation
intensities σF , as higher excitation levels facilitate frequent switching between the
potential wells.

6 Conclusions

In the present paper, we investigate the dynamic behavior of energy harvesting sys-
tems based on the ambient stochastic excitation of piezo beam systems. The excitation
is considered to have white noise character. Due to adding magnets, the beam may
have single or double potential well character. In order to describe the dynamic behav-
ior, the corresponding Fokker-Planck equation is solved using a method introduced
e.g. in [23]. This method allows the computation of pdfs in a much faster way than
by using Monte Carlo methods.

The studies performed in this paper show that in the stochastic environment the
double well potential is optimal for the system under consideration (Fig. 4). This
is related to appearance of larger amplitude response in the presence of potential
barrier overcome and cross-well oscillations. It should be noted that the term α (Eq.
21), which governs the potential shape, is determined by the choice of the magnets’
positions and orientations (Fig. 1). Presumably, higher noise levels will favour higher
potential barriers with stronger negative α term leading to higher voltage amplitudes
and power output. However, these tendencies should be studied more systematically
for various levels of excitation σF .

In future work, the proposed method should be applied to a more sophisticated
model of the EH-system, e.g. taking into consideration more than one shape function
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for the discretization of the piezo beam system under broad-band excitation, as well
as a more detailed modeling of the excitation processes. The method of solution of
the Fokker-Planck equation allows for a time-saving computation of the problem and
therefore should enable multiple parameter variations with respect to the optimization
of the energy output.
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